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• Assistant Professor, University of Alabama 

• Education 

– B.S. 2000 (BUAA) 

– M.S. 2002 (BUAA) 

– Ph.D. 2008 (Univ. of Michigan) 

• Research areas 

– Nonlinear aeroelasticity 

– Structural dynamics 

– Active/smart structures 

– Flight dynamics 

– Active control 

– UAV, MAV, Wind Turbine, etc. 

 

• Research lab: 

– Aeroelasticity and Structural Dynamics Research Laboratory 

– www.bama.ua.edu/~wsu2/ 

About Me … 
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Overview 

• Introduction 

– Motivation and background 

– Objective 

• Nonlinear aeroelastic formulation 

– Geometrically nonlinear beam model 

– Aerodynamic and flight dynamic formulations 

• Numerical studies 

– Flutter instability 

– Response to external disturbance (gust) 

• UAV design and flight tests 

• Concluding remarks 

• Other research areas 
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High-Altitude Long-Endurance (HALE) Aircraft 

• Aircraft for surveillance, target acquisition, and communications 

• Desired features: 

– long operation range 

– long loiter time 
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High aerodynamic efficiency 

High-aspect-ratio wings 

Very flexible aircraft 

Low structural weight fraction 
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Wing Aspect Ratio and Aerodynamic Efficiency 

 

 

 

 

 

 

 

 

 

 

Large aspect ratio for high aerodynamic 

efficiency 

 

But…The large AR brings something interesting 
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F-22a 

AR = 2.36 

ETA (Germany) 

AR = 51.33 

B787-8 

AR = 11.08 
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U.S. Air Force Sensorcraft Studies 

• HALE aircraft may adopt rather unconventional configurations: 

• Unmanned vehicles 

• Sensor platform 

• Very high fuel fractions (up to 60%) 
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ISR (intelligence, surveillance, reconnaissance) 

“Sensorcraft” Concepts (Lucia, 2005) 
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Pushing the Flight Envelop… 
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AeroVironment’s Global Observer: 

One week 

AeroVironment’s Helios: >24 hrs 

DARPA’s Vulture Program: >5 years  

High lift-to-drag ratio wings and low structural weight fraction 
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Background 

• Aeroelastic response of vehicles with long, high-aspect-ratio wings is 

inherently nonlinear: 

– Large elastic deflections: structurally nonlinear 

– Large angles of attack: aerodynamic nonlinear 

– Local transonic effects: aerodynamic nonlinear 

 

• Low frequency aeroelastic response couples with flight dynamics with 

nonlinearities possibly dominating the vehicle response 

– Trajectory and attitude 

– Stability (including body-freedom flutter) 

– Response to disturbances 

 

• Combined nonlinear effects alter loads, stability, performance 

8 
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Mishap of Helios Prototype 
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[That] more advanced, multidisciplinary (structures, 

aeroelastic, aerodynamics, atmospheric, materials, 

propulsion, controls, etc.) time-domain analysis 

methods appropriate to highly flexible, morphing 

vehicles [be developed]. 

[1] Noll, T. E., Brown, J. M., Perez-Davis, M. E., Ishmael, S. D., Tiffany, G. C., 

and Gaier, M., “Investigation of the Helios Prototype Aircraft Mishap,” Tech. rep., 

NASA, January 2004. 

The number one root cause/recommendation from NASA[1] 

was: 
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Focus 

• Objective: 

– Understand the aeroelastic response of very flexible aircraft during normal 

and unusual flight conditions 

• Structural integrity 

• Stability 

• Controllability 

– Generate parametric models for concept design of unconventional 

configurations 

– Explore different electric/mechanical/aero mechanisms for vehicle 

aeroelastic control 

• Approach: 

– Develop reduced-order aeroservoelastic formulation 

• For preliminary vehicle and control design studies or more detailed analysis 

• Able to simulate fully flexible vehicle with 6 rigid-body DoF’s 

– Numerically investigate aeroelastic response of different vehicle 

configurations under different nonlinear effects 
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Reduced-Order Aeroelastic Framework 
11 

Rigid-Body 

Dynamics 

Structural 

Dynamics 

Aerodynamics 

NAST 

A Multidisciplinary Approach 

Strain-based 

geometrically nonlinear 

composite beam 

Nonlinear 6-DoF 

vehicle dynamics 

Incompressible 2-D unsteady 

aerodynamics, Prandtl-Glauert 

and tip loss corrections, stall 

model 

Simplified free-flight analysis and simulation for full aircraft 
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Reduced-Order Aeroelastic Framework 

(Cont’d) 
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Simplified free-flight analysis and simulation for full aircraft 

A Multidisciplinary Approach 
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Reduced-Order Structural Modeling 

• From 3D elastic problem to 2D beam cross-sectional analysis and 1D 

beam model 

• Dimensional reduction using the Variational-Asymptotic Method: 

– Active thin-walled solution (mid-line discretization) 

– VABS (finite-element discretization) 

– User defined stiffness constants 
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Cross-Section Stiffness and Actuation Constants 
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Highlight of Strain-Based Geometrically 

Nonlinear Beam Formulation 

• Geometrically exact formulation – no approximation to 

deformation of beam reference line 

• Reduced number of degrees of freedom 

• Efficient in solving geometrically nonlinear static problem 

• Beam strain (curvature) is directly measured by control sensor – 

facilitate control design and study 

• Catch geometrically nonlinear behavior of flexible isotropic and 

composite wings 

• Provide structural dynamic models for nonlinear aeroelastic and 

control studies of very flexible slender structures 

 

• Difficulty in solving statically indeterminate beams – with splits 

and joints 
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Basic Coordinate Systems 

• Global frame (G) 

• Body frame (B) – origin not 

necessary to be C.G. of vehicle 

• Body frame motion variables 

 

 

 

 

 

 

• Local beam frame (w) 

• Auxiliary local frame (b) 
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Strained-Based Finite Element Beam 

Formulation 
• Geometrically nonlinear beam formulation[2] 

• Four local strain degrees-of-freedom (ε): extension, twist, flatwise 

bending, and chordwise bending 

• Constant-strain elements 

• Capture large complex deformations with fewer 

elements – computationally efficient 

• Isotropic and anisotropic constitutive relations 

16 

Sample element deformations 

with constant strain 

[2] Su, W., and Cesnik, C. E. S., “Strain-Based Geometrically Nonlinear Beam Formulation for 

Modeling Very Flexible Aircraft,” International Journal of Solids and Structures, Vol. 48, No. 16-17, 

2011, pp. 2349-2360. doi: 10.1016/j.ijsolstr.2011.04.012 

Strains () and body velocities () 

are independent variables 
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Nodal Position and Orientation 

• Arbitrary point in a cross-section 

(a) 

 

 

 

• Position and orientation of 

nodes along beam reference line 

 

 

• Differential and variation of h are 

related to   and  
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Body Frame 

Motion 

Elastic Strain 
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Virtual Work – Inertia of Flexible Beam 

Members 

• Inertia force 

 

 

 

 

 

 

 

 

 

• Consists of virtual displacement       and dependent variable 
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Velocity and acceleration: 
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Virtual Work of Flexible Beam Members 

• Internal strain and strain rate 

 

 

• Virtual work of external load 

 

 

• Assembly of total virtual work 
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Formulation Based on Principle of Virtual Work 
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Equations of Motion 

Generalized Mass Generalized Damping Generalized Stiffness Generalized Force 
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Unsteady Aerodynamics – Finite-State Inflow 

Theory 

• 2-D Theodorsen-like unsteady aerodynamics (Peters et al., 94, 95) 

 

 

 

 

 

• Glauert expansion of inflow velocity 

as function of inflow states, λn 

 

 

• Finite state differential equation is transformed to independent 

variables  and  
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Finite-State Inflow Theory: Modifications 

• Aerodynamic coefficient from XFoil (Re effects) 

• Compressibility accounted for by Prandtl-Glauert correction 

 

• Spanwise aerodynamic corrections 

 

 

• Simplified stall model 
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Flight Dynamics Modeling 
23 

The trajectory and orientation of a fixed body reference frame, B, at point O, 

which in general is not the aircraft’s center of mass 
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Complete-Aircraft Dynamics Model 

• Elastic equations of motion 

 

 

 

 

• Finite-state 2-D unsteady aerodynamics 

 

 

 

• Body reference frame propagation 
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NAST: Function Block Diagram 
25 

Implemented in Matlab   
Quickly generate major 

aircraft components 

through identification of 

basic geometric and 

material parameters  
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Nonlinear Aeroelastic Simulation Toolbox 

(NAST) 

26 

Solutions: 

• Nonlinear aeroelastic steady state 

deformation/trim solution 

• Linearized aeroelastic response 

• Fully nonlinear time-marching aeroelastic 

simulation 

• Recovery of ply stress/strain, evaluation of 

ply failure 

• Evaluation of flutter instability boundary, 

LCO 

• Simulation of free flight of fully flexible 

vehicle 

• Structure and aeroelastic modes and 

frequencies 

• Closed-loop aeroelastic simulation 

failure analysis 

ply stress/strain distribution 

maneuver characteristics 

steady aerodynamic solution 

large structure deformation 

pre-twist and curvature 

cross-section model 

discrete control surfaces 

NAST is implemented in Matlab   
Automatic generation of major 

aircraft components through 

identification of basic geometric 

and material parameters  
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Numerical Studies 

27 
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Blended-Wing-Body (BWB) Model 

• Properties inspired from HiLDA (High Lift over Drag Active Wing) 

wind-tunnel model 

28 

Elevon: 25% chord 



Aeroelasticity and Structural 

Dynamics Research Laboratory 

Flutter of Constrained Vehicle 

• Similar to constrained wind-tunnel model (no body DOFs) 

• Fixed root angle of attack (8 deg) 

• Free stream velocity 1% higher than flutter speed 

29 

Coupled out-of-plane bending/torsion/in-plane bending mode 
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Comparison of Flutter Modes with Rigid-Body 

Constraints 

30 

All cases trimmed for 6,096 m 

(20,000 ft) altitude, same fuel 

condition 

Fully 

constrained 

rigid-body DOFs 

Additional 

plunge DOF 

With pitch and 

plunge DOFs 

(“same” for free 

flight – 6 DOFs) 

Flutter Speed Frequency 

Fully 

constrained 

dof’s 

172.52 m/s 7.30 Hz 

+ plunging 164.17 m/s 7.07 Hz 

+ pitching and 

plunging 
123.17 m/s 3.32 Hz 

Free flight 123.20 m/s 3.32 Hz 

Traditional wind-tunnel setup 

maybe non-conservative – need 

rigid-body DOFs in the aeroelastic 

analyses, simulations, and tests 
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Highly Flexible Flying Wing Model 

• Representative of Helios prototype[3] 

– Five engines and three pods 

– Payloads applied at center pod 

– Empty gross mass: 726 kg 

31 

[3] Patil, M. J., and Hodges, D. H., “Flight Dynamics of Highly Flexible Flying Wings,” 

Journal of Aircraft, Vol. 43, No. 6, 2006, pp. 1790-1798. 
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Trim Results and Flight Stability 

• Speed: 12.2 m/s at sea level; Payload: 0 – 227 kg (at center pod) 

• Linearization about each trimmed condition with increase of payloads 

• Root locus for phugoid mode (left: flexible, right: rigid)  

• Unstable phugoid mode for payload > 152 kg 
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Payload 

[3] 

Flexible Rigid 

Payload 

Zero payload: 

span-loaded 

Full payload: 

center-loaded 

Nonlinear aeroelastic/flight dynamic characteristics dependent on trim 

conditions 
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• Fixed region in space 

• Amplitude distribution 

– Peak at center and zero at boundary 

– Possibly different distribution in East 

and North directions 

– Smooth transition 

 

 

 

 

 

• Time variation: 1-cosine with 

different temporal durations 

 

Discrete Non-uniform Gust Model 
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Non-symmetric Gust Input and Response – 

Fully-Loaded Configuration 
• Payload: 227 kg; gust region radius: 40 m; 

maximum gust center amplitude: 10 m/s 

• Non-symmetric gust distribution: gusts mainly applied 

on right wing 
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2 s gust duration 4 s gust duration 8 s gust duration 

Gust duration impacts after-gust flight path 
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Instantaneous Vehicle Positions and 

Orientations 

• Positions and orientations at  0, 5, 12, 18, 24, and 30 s, 

respectively 
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Flight Direction 

8-s gust 
4-s gust 

2-s gust 

Illustration of unstable Phugoid mode 
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Animation of Vehicle Motion with Gust 

Perturbations 
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2-s gust 

4-s gust 

8-s gust 
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Experimental Studies 

37 
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Duke University’s Wind-Tunnel Test 

• Tang and Dowell’s high-aspect-ratio wing with a tip slender body 

• Nonlinear aeroelastic tests, studying geometrically nonlinear effects on 

wing response 

• Data available in public domain for code validations 
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Photo from Tang and Dowell, 

Duke University Su, Zhang, and Cesnik, IFASD 2009 

[3] 

[3] 

No complete vehicle aeroelastic/flight dynamic data available to support 

full formulation validation 
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X-HALE Project 

• Designed and manufactured in Umich, with support from AFIT 

and AFRL 

 

• Design, build, and test experimental platform to provide 

controlled nonlinear aeroelastic / flight dynamic coupled data to 

be used for code validation 

39 

My previous institute 
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X-HALE Concept 
40 

4 Modular Fairings 
- Data acquisition and propulsion 

- 64 single ended A/D channels 

- 64 differential A/D channels 

6 Meter Wing Span 
- Fiberglass / graphite / foam construction 

EMX07 - Reflexed Airfoil 
- Positive moment coefficient 

Central Guidance Fairing 
- GPS, INS, comm 

- 3 axis accelerometer 

- 3 axis IMU 

- 3 axis gyro 

5 Motors 
- PJS 1200 

- 8.5 N max thrust each 

- 2 differential outboard motors 

- Yaw to turn control 
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Basic Dimensions 
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1m 

6m 

0.18m 

0.2m 

0.32m 

0.475m 

0.12 m 

10º 

Control Surface - 100% Elevon 

TOP VIEW 

FRONT VIEW CROPPED - WINGTIP 

0.65m 

0.51m 
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Primary Flight Controls 

• Forward thrust – all motors 

• Yaw to turn – differential outboard motors  

• Pitch – Tails 1 and 2 

• Roll – All differential or 2-4 and 1-3 combination 

• Ailerons on dihedral wing members 

42 

Fairing / Tail Label 1 3 0 2 4 

Wing Label 

5 3 1 2 4 6 

Mixing channels before and after servo switched controller (SSC) 
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Wing Manufacturing 
43 
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Still Going On… 

• Details about X-HALE design/simulation is published[4] 

• First “hobby” flight 

– Jan 2011 at UM Oosterbaan Fieldhouse 

 

 

 

 

 

 

 

• First flight of X-HALE 

– Aug, 2012 at Camp Atterbury, IN 

• More information to be released in the future 
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[4] Cesnik, C.E.S., Senatore, P.J., Su, W., Atkins, E.M., and Shearer, C.M., “X-HALE: A 

Very Flexible UAV for Nonlinear Aeroelastic Tests,” AIAA Journal, Vol. 50, No. 12, 2012, 

pp. 2820–2833. 
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Concluding Remarks 

• Numerical framework for modeling and analyzing very flexible 

aircraft (VFA) 

– Coupled nonlinear aeroelastic/flight dynamic simulation (open and 

closed loop) 

– Strain-based geometrically-nonlinear beam model 

– Incompressible unsteady aerodynamics (with compressibility 

corrections and stall models) 

– Rigid-body flight dynamics 

 

– Non-symmetric, spatially-distributed, discrete gust model 

– Skin wrinkling effects modeled as bilinear torsional stiffness 
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Concluding Remarks (Cont’d) 

• VFA have radically different behavior than conventional aircraft 

– Coupling between aircraft deformation and rigid-body motions 

changes flutter boundaries 

– Flutter boundary in free flight condition may not be impacted by 

wing in-plane bending stiffness 

– Finite amplitude gust can excite instabilities 

– High instantaneous angle of attack on some wing stations results in 

stall, resulting in different transient responses of the wing and may 

alter the vehicle flight behavior 
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Concluding Remarks (Cont’d) 

• What did we learn from the physics of VFA? 

– Deformed aircraft geometry, which depends on the operating (trim) 

condition, should be the basis in weight, structural, and stability 

analyses 

– Traditional linear solution to VFA aeroelasticity might not be 

sufficient – Nonlinear solution is required 

– Coupling between aeroelasticity and flight dynamics needs to be 

considered 

– Aeroelastic models should incorporate the rigid-body motion, and 

vice versa. Individual solutions might not be appropriate 
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Research on different aspects of Very Flexible Aircraft & Structures are 

on-going at the University of Alabama! 
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Ongoing and Future Research Areas 

48 
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Classic Aeroelasticity 

• Aeroelasticity of large-scale very flexible aircraft 

– Next-generation HALE UAVs 

• DARPA, Air Force, Boeing, NASA …… 

– Enhanced structural modeling capability 

– Aerodynamics for different flight conditions and 

aircraft configurations 

 

 

 

 

 

 

 

– Other emerging technologies in aerospace structures 

– Efficient aeroelastic solutions: real-time flight simulation 

USAF X-56A 

DARPA’s Vulture Program 
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Active and Adaptive Aerospace Structures 

• Flight is flexible in nature 

• Flight is also adaptive in nature 

– Morphing aircraft 

• Wing warping (twist and camber) 

– Adaptive structures (ribs) 

– Integrated strain actuation 

– Actuator/sensor/power 

– Control algorithm/mechanism 

• Applications – active aeroelastic 

tailoring and control: 

– Trajectory control 

– Gust/Disturbance alleviation 

– Helicopter vibration/noise reduction 

– etc. 
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NASA Langley MFC Actuator 

Morphing aircraft concept, NASA Langley 
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(Energy) Self-Sustained Autonomous System 
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Cross-Section Stiffness and Actuation Constants 

Use of piezoelectric effects in two ways 
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Rotary Systems – Helicopters and Wind 

Turbines 

• Blade vortex interaction (BVI) 

• (Helicopter) vibration, noise 

• (Wind-turbine) power generation, fatigue 

 

 

 

 

 

• Active and smart blades 

– Active vibration control 

– Noise reduction 

– Health monitoring 
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Source: ONERA 
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Active Aeroelasticity for Wind Turbines 

• Large wind turbines 

– More power generation 

– Flexible blades 

• Aeroelastic / acoustic issues 

– Operation speed close to flutter 

– Noise places limit on blade size 

• Smart blade 

– Active aeroelastic tailoring for load and flow control 

– Alleviation of disastrous wind load 

– Onboard health monitoring 

• What can we model? 

– Nonlinear beam model 

– Active composite materials 

– Need a proper aerodynamic model 

– Experimental support 
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Questions? 


