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This paper introduces a strain-based geometrically nonlinear beam formulation for structural and aero-
elastic modeling and analysis of slender wings of very flexible aircraft. With beam extensional strain,
twist, and bending curvatures defined as the independent degrees of freedom, the equations of motion
are derived through energy methods. Some special treatments are applied to the formulation to effec-
tively model split-beam systems and beam configurations with multiple nodal displacement constraints.
Using the strain-based formulation, solutions of different beam configurations under static loads and
forced dynamic excitations are compared against ones from other geometrically nonlinear beam
formulations.
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1. Introduction

In structural dynamic and aeroelastic analysis of very flexible
aircraft (e.g., glider and high-altitude long-endurance aircraft),
the slender wings of these aircraft can be modeled as beams by
taking advantage of the structure slenderness. However, the high
flexibility associated with the wings brings some special require-
ments to the beam formulation applied to the analysis. From the
previous investigations (Patil et al., 2000, 2001a,b), the slender
wings of very flexible aircraft may undergo large deformations un-
der normal operating loads, exhibiting geometrically nonlinear
behaviors. The aeroelastic behavior of the aircraft may change sig-
nificantly due to the large deflection of the flexible wings. In addi-
tion, very flexible aircraft usually see the coupling between the
low-frequency elastic modes of their slender wings and the rigid-
body motion of the complete aircraft (Livne and Weisshaar,
2003; Patil et al., 2001b; Shearer and Cesnik, 2007; Su and Cesnik,
2010). Therefore, the coupled effects between the large deflection
due to the wing flexibility and the aeroelastic/flight dynamic char-
acteristics of the complete aircraft must be properly accounted for
in a nonlinear aeroelastic solution. For this purpose, a beam formu-
lation that is able to capture the geometrically nonlinear wing
deformation is required to serve as the basis of the nonlinear aero-
elastic analysis of very flexible aircraft. Moreover, in the modeling
of aircraft structures, the complete aircraft is represented by a mul-
tiple-connected flexible beam system. Such beam system may fea-
ture split and joint between beam members, resulting in a
ll rights reserved.
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statically indeterminate structure. An example of such layout is
the joined-wing sensorcraft configuration (Tilmann et al., 2003).

There have been different geometrically nonlinear formulations
established for slender beams. One may classify them based on the
solution methodology, namely the displacement-based formula-
tion, the mixed-form formulation, and the strain (or stress)-based
formulation. Their difference lies in the definition of independent
variables to represent the displacement field and the treatment
of the beam reference line’s rotation in the solution. Palacios and
Cesnik (2009) comprehensively discussed the three types of beam
formulations for the structural, aeroelastic, and flight dynamic
analysis of very flexible aircraft. They compared the solutions in
terms of their numerical efficiency and simplicity for integrated
flight dynamic analysis with full aircraft flexibility.

A common approach to solve the geometrically nonlinear beam
is to use a displacement-based formulation. An implementation of
this type of formulation can be found in Bauchau and Hong (1988),
where displacements and rotations of the beam reference line
were defined as the irreducible set of solution variables. The main
advantages of this formulation are: (1) displacement constraints
can be easily applied, and (2) numerical solution algorithms are
abundant and well addressed in the literature. However, the com-
plexity of this formulation and its corresponding order of the non-
linearities are high. These result in high computational cost for the
solution.

To solve the geometrically nonlinear beams in a more computa-
tionally effective way, one of the alternatives is the mixed-form
geometrically exact formulation, e.g., Hodges (1990). Lagrange
multipliers are used to satisfy the equations of motion with consti-
tutive and kinematics relations in the formulation. The mixed-form
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Nomenclature

A coefficient matrix in solving member kinematics
A(s) beam cross-sectional area
B body reference frame
BF, BM influence matrices for the distributed forces and mo-

ments
b local auxiliary reference frame defined at each node

along beam reference line
Dnm direction cosines that accounts for the beam reference

line slope discontinuities from element m to element n
Dbw direction cosines between the local w frame and the b

frame at the same node
Fa inertia force at an arbitrary point a
Fdist, Fpt distributed and point forces
f any internal or external load applied to the beam
G global (inertial) reference frame
GðsÞ KðsÞðs� s0Þ, matrix of strain components for the solu-

tion of beam kinematics
g gravity acceleration column vector
h absolute positions and orientations of beam nodes, rep-

resented by the w frame base vectors
�h column vector consisting of the unknown nodal posi-

tions and orientations
h⁄ column vector consisting of the boundary condition in

solving member kinematics
hb absolute positions and orientations of beam nodes, rep-

resented by the b frame base vectors
I identity matrix
Iij mass moment of inertia of the beam cross section about

its shear center (i, j = x,y,z)
J Jacobian matrix
KðsÞ matrix of strain components
Kc total generalized stiffness matrix due to additional dis-

placement constraints
Kca, Kcr generalized stiffness matrices for absolute and relative

displacement constraints, respectively
k(s), c(s) beam cross-sectional stiffness and structural damping

matrices
Mcs(s) beam cross-sectional inertia matrix
M, C, K discrete mass, damping, and stiffness matrices of the

whole system
Me, Ce, Ke element mass, damping, and stiffness matrices
MF, CF, KF generalized mass, damping, and stiffness matrices of

the whole system
Mdist, Mpt distributed and point moments
m mass per unit length, kg/m

N influence matrix for the gravity force
p, pw position of the w frame with respect to the B frame
pa position of an arbitrary point a with respect to the G

frame
pb position of the b frame with respect to the B frame
R generalized load vector
Rc total generalized load vector due to additional displace-

ment constraints
Rca, Rcr generalized load vector for absolute and relative dis-

placement constraints, respectively
rx, ry, rz position of the cross-sectional mass center in the w

frame
s beam curvilinear coordinate, m
s0 curvilinear coordinate of the root of a beam member, m
u corresponding displacement due to any internal or

external load f applied to the beam
V volume of the beam
Wa virtual work at an arbitrary point a
Wext, Wint external and internal virtual work, respectively
w local beam reference frame defined at each node along

beam reference line
x, y, z position of an arbitrary point a in the corresponding lo-

cal w frame, m
a stiffness-proportional damping coefficient
aN numerical damping in geometrically nonlinear static

solutions
e elastic strain vector
ee element elastic strain vector, including extension, twist,

out-of-plane, and in-plane bending
e0 initial (prescribed) elastic strain vector
h rotations of beam nodes, rad
kc total Lagrange multipliers vector
kca, kcr Lagrange multipliers for absolute and relative displace-

ment constraints, respectively
P energy functional of the system
P⁄ modified energy functional with displacement con-

straints introduced
q beam material density, kg/m3

Subscripts
e element
he h vector with respect to the strain e
pe nodal position with respect to the strain e
x, y, z directions of base vectors of a reference frame
he nodal rotation with respect to the strain e
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formulation has its advantages over the displacement-based for-
mulation, which include relaxation of the continuity of the shape
functions and possible higher solution accuracy (Zienkiewicz and
Taylor, 2000). The formulation allows for a simple solution scheme
(Hodges et al., 1996) and has been applied to the analysis of rotor
blades (Shang et al., 1999) and a complete very flexible aircraft
(Patil et al., 2000, 2001b). Another application of the mixed-form
formulation can be found in the work of Palacios and Cesnik
(2008), where a numerical framework was developed using this
formulation to model slender beams with embedded piezoelectric
materials. The low-order formulation can provide high accuracy for
the modeling, design, and analysis of slender structures. In the
mixed-form formulation presented by Hodges (1990), the beam
rotations were still solved as independent degrees of freedom. An
updated mixed-form solution was introduced in Hodges (2003),
where nodal velocities and beam curvatures were defined as the
structural states of the beam. This formulation avoids the direct
solution of the beam rotations, which can reduce the computa-
tional cost in the solution. However, it brings difficulties in model-
ing the statically indeterminate beams. Overall, the mixed-form
formulation is suitable for the nonlinear aeroelastic and flight
dynamic problems of very flexible aircraft, which feature low-fre-
quency responses and large wing motions.

The strain-based approach is another effective solution to the
geometrically nonlinear beam problems. Examples of this type of
beam formulation can be found in the literature (Gams et al.,
2007a,b; Planinc et al., 2001; Zupan and Saje, 2003). Common in
these beam solutions, strains and curvatures of the beam reference
line are primary variables to represent the beam deformation.
Since no direct integration of beam rotations is required, the
strain-based formulation allows for simple shape functions (Gams
et al., 2007a). The shear locking phenomena is also avoided in
strain-based solutions (Ryu and Sin, 1996; Zupan and Saje, 2003).
In addition, the internal forces and moments can be easily
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Fig. 1. Basic beam reference frames: (a) global and body frame defining the rigid-
body motion of aircraft; (b) flexible lifting-surface frames within body frame.
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determined in these solutions from the strain variables without
differentiation operations that are usually required in displace-
ment-based solutions. The accuracy of the internal forces and mo-
ments is of the same order as the accuracy of the independent
variables (Zupan and Saje, 2003). The strain-based beam equations
can be solved with a simple time-integration scheme (Gams et al.,
2007a), and has been applied to the geometrically nonlinear prob-
lems of curved beams and other slender structures.

This paper presents a strain-based approach to address the non-
linear aeroelastic and control problems of very flexible aircraft. The
proposed formulation defines the extensional strain, bending and
twist curvatures of the beam reference line as the independent de-
grees of freedom, while transverse shears are not explicitly in-
cluded in them. Unlike the strain-based formulations presented
in the literature (e.g., Zupan and Saje, 2003), which enforce the
beam equilibrium equation and strain–displacement kinematics
simultaneously with Lagrange multipliers, the proposed strain-
based formulation solves these equations iteratively. Thus, the
derived governing equation is the classic form of second-order dif-
ferential equation, which simplifies the solution process. For that,
the force and displacement boundary conditions are considered
in a new way and the modeling of multiple-connected beam sys-
tems is addressed by using Lagrange multiplier. These improve-
ments in this new formulation make it more flexible in modeling
arbitrary beam configurations under different loading conditions.
Besides the above-mentioned advantages, the strain-based formu-
lation brings additional benefits to control studies, since the curva-
tures are the variables that can be directly measured by the strain
sensors. This formulation may also demonstrate great computa-
tional efficiency, due to the reduction in degrees of freedom for
the same complex deformation when compared to the displace-
ment-based or the mixed-form formulations. Lastly, the strain-
based formulation is efficient in solving geometrically nonlinear
static problems, as it features a constant stiffness matrix (for stat-
ically determinate beams). This advantage, however, does not hold
in nonlinear transient solutions, where the inertia and damping of
the system need to be updated according to the instantaneous
beam deformation states. While the authors and co-workers have
used aspects of this beam formulation for aeroelastic problems
(Cesnik and Brown, 2002; Shearer and Cesnik, 2007; Su and Cesnik,
2010), this paper presents the complete treatment of the strain-
based geometrically nonlinear beam formulation. The finite-ele-
ment equations of motion are derived with the modeling capability
of multiple-connected and statically indeterminate beams. Numer-
ical studies highlighting the features and modeling capabilities of
the strain-based beam formulation are also presented.
2. Theoretical formulation

In this formulation, the nonlinear beam is allowed fully coupled
three-dimensional extensional, twisting, and bending deforma-
tions. The equations of motion for the beam are derived by apply-
ing the principle of virtual work and the variation of energy
functional.
2.1. System frames

As shown in Fig. 1(a), a fixed global (inertial) frame G is firstly
defined. A body frame B(t) is then built in the global frame to de-
scribe the vehicle position and orientation, with Bx(t) pointing to
the right wing, By(t) pointing forward, and Bz(t) being cross product
of Bx(t) and By(t).

Within the body frame, a local beam frame w is built at each
node along the beam reference line (Fig. 1(b)), which is used to de-
fine the nodal position and orientation. Vectors wx(s, t), wy(s, t), and
wz(s, t) are bases of the beam frame, whose directions are pointing
along the beam reference axis, toward the leading edge (front), and
normal to the beam surface, respectively, resolved in the body
frame. s is the curvilinear beam coordinate.

To facilitate the modeling process, another auxiliary reference
frame b(s, t) is also defined at each node. This frame is aligned with
the body frame B upon the beam initialization. However, it may
undergo both translations and rotations due to the beam deforma-
tion and the rigid-body motion of the vehicle. The b frame is useful
for modeling the relative nodal displacement constraints that will
be discussed in Section 2.7. Note that the w frame and the b frame
will be aligned if there is no sweeping, dihedral, and pre-twist of
the beam at its initial configuration.

2.2. Fundamental descriptions of elements

A nonlinear beam element is developed to model the elastic
deformation of slender beams. Strain degrees (curvatures) of the
beam reference line are considered as the independent variables
in the solution. The strain-based formulation allows simple shape
functions for the strain degrees in the element. Constant-value
functions are used here. Thus, the strain vector of an element is de-
noted as

ee ¼ f ex jx jy jz gT ð1Þ

where ex is the extensional strain, jx, jy, and jz are the twist of the
beam reference line, bending about the local wy axis, and bending
about the local wz axis, respectively. The total strain vector of the
complete aircraft is obtained by stacking the element strain vectors:

eT ¼ eT
e1; eT

e2; eT
e3; . . .

� �
ð2Þ



Fig. 2. Deformations of a constant-strain element: (a) circular shape; (b) spiral
shape.
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Transverse shear strains are not explicitly included in this equation.
However, shear strain effects are included in the constitutive rela-
tion (Cesnik and Hodges, 1997). Complex geometrically nonlinear
deformations can be represented by such a constant strain distribu-
tion over each element. For example, a single element can be de-
formed into a circle or a spiral (Fig. 2). To represent the quadratic
nodal displacement field that will be recovered from the constant
strain, the element is defined with three equally spaced nodes.
Some of the functions, such as inertia and distributed load, are as-
sumed to vary linearly between the three nodes of each element.
The values of these functions over the element can be obtained from
its nodal values using linear Lagrange interpolation functions.

The position and orientation of each node are defined by a vec-
tor consisting of 12 components, denoted as

hðsÞT ¼ f pwðsÞ
T
; wxðsÞT ; wyðsÞT ; wzðsÞT g ð3Þ

where pw is the position of the w frame resolved in the body frame.
The governing equations to be derived will solve for the curvatures
(strains) of the beam reference line directly. The nodal position and
rotation h are dependent variables, which will be recovered from
the curvatures through the kinematic relations. Details about the
kinematics will be discussed in Section 2.5. For the convenience
of deriving the equations of motion, nodal rotations h, about the lo-
cal beam reference frame, are also used as interim variables in this
formulation. They are eventually eliminated from the governing
equations through the strain-rotation relations (Section 2.5).

2.3. Internal virtual work

The equations of motion of the system are derived by following
the principle of virtual work. The total virtual work done on a beam
is found by integrating the products of all internal and external
forces and the corresponding virtual displacements over the vol-
ume, which is given as

dW ¼
Z

V
duTðx; y; zÞf ðx; y; zÞdV ð4Þ

where f represents general forces acting on a differential volume.
This may include internal elastic forces, inertial forces, gravity
forces, external distributed forces and moments, external point
forces and moments, etc. du is the corresponding virtual displace-
ment. When beam cross-sectional properties are known, the inte-
gration of Eq. (4) over the beam volume is simplified to the
integration along the beam coordinate s. This integration is first
numerically performed over each beam element, followed by the
assemblage of the element quantities to obtain the total virtual
work on the whole beam.

2.3.1. Internal virtual work due to inertias
With the B frame and the G frame (Fig. 1) coincident, the posi-

tion and acceleration of an arbitrary point a, in the beam is given as
pa ¼ pw þ xwx þ ywy þ zwz

€pa ¼ €pw þ x €wx þ y €wy þ z €wz
ð5Þ

where (x,y,z) is the position of point a within the local beam frame
w. The virtual work done on a differential volume due to the inertial
force is given by

dWa ¼ dpT
a dFa ð6Þ

with

dpa ¼ dpw þ xdwx þ ydwy þ zdwz

dFa ¼ �€paðqdAðsÞdsÞ
¼ �ð€pw þ x €wx þ y €wy þ z €wzÞðqdAðsÞdsÞ

ð7Þ

where q is the material density. Substituting Eq. (7) into Eq. (6)
yields

dWa ¼ � dpT
w þ xdwT

x þ ydwT
y þ zdwT

z

� �
€pw þ x €wx þ y €wy þ z €wz
� �

qdAðsÞds
ð8Þ

The virtual work done by the inertia force along the beam coordi-
nate s can be obtained by integrating Eq. (8) over each cross section,
leading to

dWintðsÞ ¼ �dhTðsÞMðsÞ€hðsÞ ð9Þ

where

McsðsÞ¼
Z

AðsÞ
q

1 x y z

x x2 xy xz

y yx y2 yz

z zx zy z2

2
6664

3
7775

12�12

dA

¼

m mrx mry mrz

mrx
1
2ðIyyþ Izz� IxxÞ Ixy Ixz

mry Iyx
1
2ðIzzþ Ixx� IyyÞ Iyz

mrz Izx Izy
1
2ðIxxþ Iyy� IzzÞ

2
6664

3
7775

12�12

ð10Þ

Mcs(s) is the cross-sectional inertial matrix, with each entry being a
3 by 3 diagonal matrix, A(s) is the cross-sectional area, m is the mass
per unit span at each cross section, (rx,ry,rz) is the position of the
cross-sectional mass center in the w frame, and Iij are the cross-sec-
tional mass moments of inertia about the reference axis.

2.3.2. Internal virtual work due to strains and strain rates
The virtual work due to the internal strains is

dWintðsÞ ¼ �deðsÞT kðsÞðeðsÞ � e0ðsÞÞ ð11Þ

where e0(s) is the initial strain upon the beam initialization, k(s) is
the cross-sectional stiffness matrix. The entries of k(s) come from
an appropriate beam cross-sectional solution (Cesnik and Hodges,
1997; Palacios and Cesnik, 2005).

Internal damping is added to the formulation to better model
the actual behavior of the structure. A stiffness-proportional damp-
ing is used in the current formulation, given by

cðsÞ ¼ akðsÞ ð12Þ

where a is the stiffness-proportional damping coefficient. Thus, the
virtual work due to the strain rates is

dWintðsÞ ¼ �deTðsÞcðsÞ _eðsÞ ð13Þ
2.3.3. Internal virtual work on element
To obtain the total internal virtual work on each element, one

needs to summate Eqs. (9), (11), and (13), and then to integrate
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the summation over the length of the element. In practice, the inte-
gration is performed numerically, given as

dWint
e ¼ �dhT

e Me
€he � deT

e Ce _ee � deT
e Ke ee � e0

e

� �
ð14Þ

where

Ke ¼ kDs

Ce ¼ cDs

Me ¼ 1
2 Ds

1
4 Mcs

1 þ 1
12 Mcs

2
1

12 Mcs
1 þ 1

12 Mcs
2 0

1
12 Mcs

1 þ 1
12 Mcs

2
1

12 Mcs
1 þ 1

2 Mcs
2 þ 1

12 Mcs
3

1
12 Mcs

2 þ 1
12 Mcs

3

0 1
12 Mcs

2 þ 1
12 Mcs

3
1

12 Mcs
2 þ 1

4 Mcs
3

2
64

3
75

ð15Þ

ee in Eq. (14) is the element strain, Ds is the initial element length,
Ke is the element stiffness matrix, Ce is the element damping matrix,
Me is the element inertia matrix, and Mcs

i are the cross-sectional
inertia matrices at each node of an element.

2.4. External virtual work

2.4.1. Gravitational virtual work
The virtual work of gravity force on a differential volume can be

obtained by following the similar approach to the virtual work of
the inertial force, given by

dWa ¼ � dpT
w þ xdwT

x þ ydwT
y þ zdwT

z

� �
qgdAðsÞds ð16Þ

where g is the gravity acceleration column vector. The virtual work
on a differential beam cross section due to the gravity force is found
by integration of Eq. (16) over each cross section, yielding

dWextðsÞ ¼ �dhTðsÞNðsÞgds ð17Þ

where N(s) is related with the inertia properties of the cross section:

NðsÞ ¼
Z

AðsÞ
q

1
x

y

z

2
6664

3
7775

12�3

dA ð18Þ

The total virtual work due to the gravity force on each element is
found by integrating Eq. (17) over the element length, resulting
in

dWext
e ¼ �dhT

e Neg ð19Þ

where

Ne ¼
1
2

Ds

1
3 N1 þ 1

6 N2
1
6 N1 þ 2

3 N2 þ 1
6 N3

1
6 N2 þ 1

3 N3

2
64

3
75

36�3

ð20Þ

with Ni being the inertia property N(s) evaluated at each node of an
element.

2.4.2. Virtual work due to distributed forces
With the assumption that distributed forces on each element

and their corresponding virtual displacements vary linearly be-
tween the nodes of the element, the element virtual work due to
distributed forces is obtained as

dWext
e ¼

Z
Ds

dpTðsÞFdistðsÞds ¼ dpT
e BF

eFdist
e ð21Þ

where
dpe ¼
dp1

dp2

dp3

8><
>:

9>=
>;

9�1

; BF
e ¼

1
2

Ds

1
3

1
6 0

1
6

2
3

1
6

0 1
6

1
3

2
64

3
75

9�9

; Fdist
e ¼

Fdist
1

Fdist
2

Fdist
3

8>><
>>:

9>>=
>>;

9�1

ð22Þ

dpi and Fdist
i are the virtual displacement and force per unit length at

node i, respectively. Note that the variable p in the above equations
refers to pw, with the subscript w omitted for simplicity. Each entry
of BF

e is a 3 by 3 diagonal matrix.

2.4.3. Virtual work due to distributed moments
The virtual work due to distributed moments is obtained in a

similar way to that of the distributed forces

dWext
e ¼

Z
Ds

dhTðsÞMdistðsÞds ¼ dhT
e BM

e Mdist
e ð23Þ

where

dhe ¼
dh1

dh2

dh3

8><
>:

9>=
>;

9�1

; BM
e ¼

1
2

Ds

1
3

1
6 0

1
6

2
3

1
6

0 1
6

1
3

2
64

3
75

9�9

; Mdist
e ¼

Mdist
1

Mdist
2

Mdist
3

8>><
>>:

9>>=
>>;

9�1

ð24Þ

dhi and Mdist
i are the virtual displacement and force per unit length

at node i, respectively. Each entry of BM
e is also a 3 by 3 diagonal

matrix.

2.4.4. Virtual work due to point forces
The virtual work on an element due to external point forces is

obtained by the following summation:

dWext
e ¼

X3

i¼1

dpT
i Fpt

i ¼ dpT
e Fpt

e ð25Þ

where

Fpt
e ¼

Fpt
1

Fpt
2

Fpt
3

8><
>:

9>=
>;

9�1

ð26Þ

with Fpt
i being the point force at node i.

2.4.5. Virtual work due to point moments
The virtual work on an element due to point moments is ob-

tained in a similar way to that of the point forces, i.e.,

dWext
e ¼

X3

i¼1

dhT
i Mpt

i ¼ dhT
e Mpt

e ð27Þ

where

Mpt
e ¼

Mpt
1

Mpt
2

Mpt
3

8><
>:

9>=
>;

9�1

ð28Þ

with Mpt
i being the point moment at node i.

2.5. Kinematics

The kinematics is solved for each member (for single-beam sys-
tems, Fig. 3(a)) or each group of members (for split-beam systems,
Fig. 3(b)). A member is defined as an assemblage of elements,
which may include beam reference line slope discontinuities, var-
iation in the discretization level, and change of cross-sectional
properties. A set of members that originate from one common root
member forms one group. The root of each member is either
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Fig. 3. Sketches of single-beam and split-beam systems: (a) single-beam system
(one member consisting of three elements); (b) split-beam system (one group
formed by three members, each member consisting of one element).
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prescribed or solved from the tip of its ‘‘parent’’ member. The nodal
positions and orientations within a member are obtained by
marching the kinematics from its root node to the end node of
the last element.

The equation that relates the dependent displacements to the
independent strains is given by Cesnik and Brown (2003)

@hðsÞ
@s
¼ KðsÞhðsÞ ð29Þ

with KðsÞ being a matrix function of the strains, i.e.,

KðsÞ ¼

0 1þ exðsÞ 0 0
0 0 jzðsÞ �jyðsÞ
0 �jzðsÞ 0 jxðsÞ
0 jyðsÞ �jxðsÞ 0

2
6664

3
7775 ð30Þ

Note that each entry in the above matrix is a 3 by 3 diagonal matrix.
With the assumption that each element has a constant strain state,
the solution of Eq. (29) is given by

hðsÞ ¼ eK�ðs�s0Þh0 ¼ eGðsÞh0 ð31Þ

where h0 is the displacement of a fixed or prescribed root node of
the beam (boundary condition). For a three-node element, the solu-
tion can be performed by using the discrete form:

hn1 ¼ Dnmhm3

hn2 ¼ e
1
2KnDshn1 ¼ eGn hn1

hn3 ¼ e
1
2KnDshn2 ¼ eGn hn2

ð32Þ

where element n is the current element with the length of Ds, and
element m is the one to which element n is attached. hni is the dis-
placement of the ith node of element n. Dnm is the rotation matrix
with direction cosines that accounts for the slope discontinuities
of the beam reference lines from element m to element n. The solu-
tions for kinematics for single-beam and split-beam systems are
different due to the different connection relations.
2.5.1. Single-beam system
For a single-beam system shown in Fig. 3(a), kinematics for a

member is obtained by marching the element kinematics from
the boundary node to the end node. Following Eq. (32), the march-
ing procedure can be written as:

h11 ¼ h0 h21 ¼ D21h13 h31 ¼ D32h23

h12 ¼ eG1 h11 h22 ¼ eG2 h21 h32 ¼ eG3 h31

h13 ¼ eG1 h12 h23 ¼ eG2 h22 h33 ¼ eG3 h32

ð33Þ

These equations can be arranged in matrix form as

I
�eG1 I

�eG1 I
�D21 I

�eG2 I
�eG2 I

�D32 I
�eG3 I

�eG3 I

2
6666666666664

3
7777777777775

h11

h12

h13

h21

h22

h23

h31

h32

h33

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

h0

0
0
0
0
0
0
0
0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð34Þ

where the empty entries in the matrix correspond to zeros. Eq. (34)
can be written into a compact form as

AðeÞ�hðeÞ ¼ h� ð35Þ

where �h is a column vector consisting of nodal positions and orien-
tations of all nodes in the member, and h⁄ is a column vector con-
sisting of the boundary condition. By solving Eq. (35), the
dependent variables (displacements) of each node can be recovered
from the independent variables (strains).

The Jacobian matrices reflecting the derivative of the displace-
ments with respect to small changes in the strains are obtained
by the differential of Eq. (35).

Jhe ¼
dh
de
¼ �AðeÞ�1 d

de
ðAðeÞ�hðeÞÞ ð36Þ

Jacobian matrix of Jpe, relating the nodal translations to small
changes in the strains, is constructed by selecting the appropriate
rows of Jhe. This is intuitive as the nodal position pw is a component
of the nodal displacement h (see Eq. (3)). The relationship between
an infinitesimal nodal rotation and an infinitesimal change in the
unit direction vectors of local beam frame w is given by

dh ¼
dhx

dhy

dhz

8><
>:

9>=
>; ¼

wT
z dwy

wT
x dwz

wT
y dwx

8><
>:

9>=
>; ð37Þ

Then the Jacobian matrix Jhe that relates the nodal rotations to small
changes in the strains is found using subsets of Jhe and the current
value of the unit direction vectors of the w frame, given by

Jhe ¼
dh
de
¼

dhx
de

dhy

de
dhz
de

2
664

3
775 ¼

wT
z

dwy

de

wT
x

dwz
de

wT
y

dwx
de

2
664

3
775 ð38Þ

where dwx/de, dwy/de, and dwz/de are subsets of Jhe. With the Jaco-
bians defined, the variation and derivatives of the dependent vari-
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able h, p, and h are related to those of the independent strain vari-
ables as:

dh ¼ Jhede dh ¼ Jhede
dp ¼ Jpede _h ¼ Jhe _e

dh ¼ Jhede €h ¼ Jhe€eþ _Jhe _e

ð39Þ
R

L

l

Fig. 4. Cantilever beam with absolute nodal displacement constraint.
2.5.2. Split-beam system
Kinematics for members of a split-beam system (Fig. 3(b)) is

still obtained by marching the element kinematics from the
boundary node to each of the end nodes. However, the marching
procedure is slightly different, because of the existence of the split
point.

In the connections shown in Fig. 3(b), the first nodes of ele-
ments 2 and 3 are both connected with the last node of element
1. Therefore, h21 and h31 are both related with h13, with different
direction cosines, given by

h11 ¼ h0 h21 ¼ D21h13 h31 ¼ D31h13

h12 ¼ eG1 h11 h22 ¼ eG2 h21 h32 ¼ eG3 h31

h13 ¼ eG1 h12 h23 ¼ eG2 h22 h33 ¼ eG3 h32

ð40Þ

These can be written in matrix form as

I
�eG1 I

�eG1 I
�D21 I

�eG2 I
�eG2 I

�D31 I
�eG3 I

�eG3 I

2
6666666666664

3
7777777777775

h11

h12

h13

h21

h22

h23

h31

h32

h33

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

h0

0
0
0
0
0
0
0
0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð41Þ

where again the empty entries in the matrix correspond to zeros.
The solution of Eq. (41) yields the displacements of a split-beam
system from strains. Note that the solution of Jacobian matrices
for the split-beam system is obtained in the same way as the sin-
gle-beam system.

2.6. System equations of motion

The total virtual work on the system is obtained by summing up
all elements’ internal and external work

dW ¼
X

dWint
e þ dWext

e

� �
¼ �dhT M€h� deT C _e� deT Kðe� e0Þ � dhT Ng þ dpT BFFdist

þ dhT BMMdist þ dpT Fpt þ dhT Mpt ð42Þ

After the assemblage of the global equations, the strain vector e, the
nodal displacement vector h, and all other variables and matrices
for all flexible members have been appropriately sized, based on
the beam discretization. The dependent variables can be replaced
by the independent variable by applying the Jacobians (Eq. (39)).
Therefore, the total virtual work on the whole beam can be written
into the strain-based form as
dW ¼ �deT JT
heMðJhe€eþ _Jhe _eÞ � deT C _e� deT Kðe� e0Þ � deT JT

heNg

þ deT JT
peB

FFdist þ deT JT
heB

MMdist þ deT JT
peF

pt þ deT JT
heM

pt ð43Þ

The equations of motion can be obtained by letting the total virtual
work be zero. Since the variation de is arbitrary, the elastic system
equations of motion are derived as

MFðe; tÞ€eþ CFðe; _e; tÞ _eþ KFe ¼ Rðe; tÞ ð44Þ

where

MFðe; tÞ ¼ JT
heMJhe CFðe; _e; tÞ ¼ C þ JT

heM_Jhe KF ¼ K

Rðe; tÞ ¼ KFe0 � JT
heNg þ JT

peB
F Fdist þ JT

heB
MMdist þ JT

peF
pt þ JT

heM
pt

ð45Þ

One may note that the stiffness matrix KF in Eq. (45) is constant and
the geometrical nonlinearity is associated with the force vector R.
This feature may simplify nonlinear static solutions.

2.7. Modeling additional nodal displacement constraints

From the solution of member kinematics, one can find the pre-
scribed displacement at the member root is naturally imposed in
the strain-based formulation. The additional displacement con-
straints are introduced using the Lagrange multiplier method.
The derivation starts from the energy functional. Without loss of
generality, consider a simplified form of the energy functional of
a nonlinear beam in the current formulation, given by

P ¼ 1
2

Z
L

kðsÞe2ds� Re ð46Þ

where k(s) is cross-sectional stiffness, L is the beam span, and R is
the generalized load. The constraint formulation will be different,
depending on the type of constraints.

2.7.1. Absolute displacement constraints
A cantilever beam is constrained at an arbitrary point (Fig. 4).

The additional constraint can be introduced into the energy func-
tional by applying a Lagrange multiplier:

P� ¼ 1
2

Z
L

kðsÞe2ds� Reþ kcaðhðlÞ � h0ðlÞÞ ð47Þ

where kca is the Lagrange multiplier, h(l) is the displacement (posi-
tion and/or rotations) of the constrained point, and h0(l) is the initial
displacement of the constrained point. The variation of the func-
tional is

dP� ¼
Z

L
kðsÞededs� Rdeþ kcadhðlÞ þ dkcaðhðlÞ � h0ðlÞÞ ð48Þ

The above equation can be discretized and written in matrix form,
yielding

dP� ¼ deT KFe� deT Rþ deT JT
heðlÞkca þ dkT

caðhðlÞ � h0ðlÞÞ ð49Þ

where Jhe(l) is the Jacobian matrix evaluated at the constrained
point.
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The variation of the functional is zero, which yields the equilib-
rium equation of the system with the additional absolute displace-
ment constraints. However, it is still necessary to handle the
variable of h(l), which is a function of the independent variable e.
The solution is performed in an iterative procedure. Assume the
independent variable, e, and the dependent variable h(l), have been
solved at step i, which are ei and hi(l), respectively. Then, the vari-
ation of the energy functional at step i + 1 can be written as

deT
iþ1KFeiþ1 þ deT

iþ1ðJheðlÞÞ
T
i ðkcaÞiþ1 þ dðkcaÞTiþ1ðhiþ1ðlÞ � h0ðlÞÞ ¼ deT

iþ1Ri

ð50Þ

The displacement can be written into the incremental form as

hiþ1ðlÞ ¼ hiðlÞ þ dhiþ1ðlÞ ¼ hiðlÞ þ ðJheðlÞÞiðeiþ1 � eiÞ ð51Þ

Substituting Eq. (51) into Eq. (50) yields

deT
iþ1KFeiþ1 þ deT

iþ1ðJheðlÞÞ
T
i ðkcaÞiþ1 þ dðkcaÞTiþ1ðJheðlÞÞieiþ1

¼ deT
iþ1Ri þ dðkcaÞTiþ1ðJheðlÞÞiei � dðkcaÞTiþ1 hiðlÞ � h0ðlÞ

� �
ð52Þ

which can be simplified to

deT
iþ1 dðkcaÞTiþ1

n o
KF ðKcaÞTi
ðKcaÞi 0

� 	
eiþ1

ðkcaÞiþ1


 �

¼ deT
iþ1 dðkcaÞTiþ1

n o Ri

ðRcaÞi


 �
ð53Þ

where

ðKcaÞi ¼ ðJheðlÞÞi
ðRcaÞi ¼ ðKcaÞiei � hiðlÞ � h0ðlÞ

� � ð54Þ

Therefore, the equilibrium equation of the system is given in a gen-
eralized form as

KF ðKcaÞTi
ðKcaÞi 0

" #
eiþ1

ðkcaÞiþ1


 �
¼

Ri

ðRcaÞi


 �
ð55Þ

Note that the Jacobian (Jhe(l))i and its transpose are both updated at
each solution step.

2.7.2. Relative displacement constraints
For the beam configurations with two members joining at a

common point (Fig. 5), these members should be considered to-
gether and an inter-member displacement constraint should be
imposed. Let the uth node of member m be coincident with the
vth node of member n upon initialization. The positions and orien-
tations of the two nodes are always constrained to be the same. In
terms of position, this relation can be written simply as

hb
mu ¼ hb

nv ð56Þ

where hb is the position and orientation vector of the b frame with
respect to the body frame B, whose definition is similar to h, except
that the rotations are expressed using the b frame base vectors:

hb � pT
b bT

x bT
y bT

z

n oT
¼ pT

w bT
x bT

y bT
z

n oT
ð57Þ

Eq. (56) can be transformed into the local beam frame w by apply-
ing the individual rotation matrix

Dbw
muhmu � Dbw

nv hnv ¼ 0 ð58Þ

where Dbw contains the direction cosines between the nodal w
frame and the b frame (Cesnik and Brown, 2003). hmu and hnv are
the nodal displacement vectors expressed using the w frame base
vectors (as defined in Eq. (3)).
Therefore, the corresponding constrained energy functional and
its variation are

P� ¼ 1
2

R
L kðsÞe2ds�Reþkcr Dbw

muhmu�Dbw
nv hnv

� �
dP� ¼

R
L kðsÞededs�Rdeþkcrd Dbw

muhmu�Dbw
nv hnv

� �
þdkcr Dbw

muhmu�Dbw
nv hnv

� �
ð59Þ

The discrete form of the variation can be given by

dP� ¼ deT KFe� deT Rþ deTðJheðmuÞÞT Dbw
mu

� �T
kcr

� deTðJheðnvÞÞT Dbw
nv

� �T
kcr þ dkT

crD
bw
muhmu � dkT

crD
bw
nv hnv ð60Þ

where Jhe(mu) and Jhe(nv) are the Jacobian matrices evaluated at the
constrained nodes, respectively.

Following the same procedure as described in the previous sec-
tion, the variation is written in the iterative form:

deT
iþ1KFeiþ1 þ deT

iþ1 ðJheðmuÞÞTi Dbw
mu

� �T
� ðJheðnvÞÞTi Dbw

nv

� �T
� 	

ðkcrÞiþ1

þ dðkcrÞTiþ1 Dbw
muðhmuÞiþ1 � Dbw

nv ðhnvÞiþ1

� �
¼ deT

iþ1Ri ð61Þ

where

ðhmuÞiþ1 ¼ ðhmuÞi þ dðhmuÞiþ1 ¼ ðhmuÞi þ ðJheðnuÞÞiðeiþ1 � eiÞ
ðhnvÞiþ1 ¼ ðhnvÞi þ dðhnvÞiþ1 ¼ ðhnvÞi þ ðJheðnvÞÞiðeiþ1 � eiÞ

ð62Þ

Substituting Eq. (62) into Eq. (61) yields

deT
iþ1KFeiþ1 þ deT

iþ1 ðJheðmuÞÞTi Dbw
mu

� �T
� ðJheðnvÞÞTi Dbw

nv

� �T
� 	

ðkcrÞiþ1

þ dðkcrÞTiþ1 Dbw
muðJheðmuÞÞi � Dbw

nv ðJheðnvÞÞi
h i

eiþ1 ¼ deT
iþ1Ri

þ dðkcrÞTiþ1 Dbw
muðJheðmuÞÞi � Dbw

nv ðJheðnvÞÞi
h i

ei � dðkcrÞTiþ1 Dbw
muðhmuÞi

�
�Dbw

nv ðhnvÞi
�

ð63Þ

which can be written into the matrix form as

deT
iþ1 dðkcrÞTiþ1

n o
KF ðKcrÞTi
ðKcrÞi 0

� 	
eiþ1

ðkcrÞiþ1


 �

¼ deT
iþ1 dðkcrÞTiþ1

n o Ri

ðRcrÞi


 �
ð64Þ

where
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ðKcrÞi ¼ Dbw
muðJheðmuÞÞi � Dbw

nv ðJheðnvÞÞi
ðRcrÞi ¼ ðKcrÞiei � Dbw

muðhmuÞi � Dbw
nv ðhnvÞi

� � ð65Þ

Therefore, the equilibrium equation of the system is given by

KF ðKcrÞTi
ðKcrÞi 0

" #
eiþ1

ðkcrÞiþ1


 �
¼

Ri

ðRcrÞi


 �
ð66Þ

Note again that the Jacobian and its transpose should be updated at
each solution step.

2.7.3. Equations of motion with additional displacement constraints
For a general beam configuration that consists of both absolute

and relative displacement constraints, one may define the total
constraint-related matrices as

kc ¼
kca

kcr


 �
; Kc ¼

Kca

Kcr


 �
; Rc ¼

Rca

Rcr


 �
ð67Þ

Therefore, the complete system equations of motion with the con-
straints can be given as a set of differential–algebraic equations.

MF 0
0 0

� 	
€e
€kc


 �
þ

CF 0
0 0

� 	
_e
_kc


 �
þ KF KT

c

Kc 0

" #
e
kc


 �
¼

R

Rc


 �

ð68Þ
Table 1
Properties of the cantilever isotropic beam.

Mass per span (m) 0.10 kg/m
Span (L) 1.00 m
Rotational moment of inertia (Ixx) 1.30 � 10�4 kg m
Flat bending moment of inertia (Iyy) 5.00 � 10�6 kg m
Edge bending moment of inertia (Izz) 1.25 � 10�4 kg m
Extensional rigidity (k11 = EA) 1.00 � 106 N
Torsional rigidity (k22 = GJ) 80.0 N m2

Flat bending rigidity (k33 = EIy) 50.0 N m2

Edge bending rigidity (k44 = EIz) 1.25 � 103 N m2

x

z

1 m

y

pt
yF

pt
zF

Fig. 6. Cantilever beam with tip loads.
2.8. Solution of the governing equations

In geometrically nonlinear static solutions, the time-dependent
terms in Eq. (68) are omitted. In an iterative manner, the equations
of motion becomes

e
kc


 �
kþ1

¼ KF KT
c

Kc 0

" #�1

k

R

Rc


 �
k

ð69Þ

Note that KF in the stiffness matrix is always constant, while Kc

needs to be updated at each iteration. One problem associated with
this approach is that it may lead to numerical instability when the
beam is very flexible and large changes may happen to the right
hand side from one solution to the next. With numerical damping
added, the incremental form of the solution is

e
kc


 �
kþ1

¼ aN
e
kc


 �
k

þ ð1� aNÞ
KF KT

c

Kc 0

" #�1

k

R
Rc


 �
k

ð70Þ

where aN is the numerical damping parameter, ranging between 0
and 1. When aN = 1, the solution is stationary. When aN = 0, the
solution is equivalent to Eq. (69).

Nonlinear transient solution of the beam is obtained by numer-
ical integration of Eq. (68). As the formulation is developed for sim-
ulating nonlinear aeroelastic response of very flexible aircraft, the
numerical integration scheme adopted should be able to provide
easy solution for combined aeroelastic and flight dynamic degrees
of freedom. In addition, the solution should be numerically stable
in a long time scale, to facilitate the time simulation of aircraft
flight. In view of the requirements, a modified first- and second-or-
der Generalized-a Method along with an implicit subiteration
scheme were developed by Shearer and Cesnik (2006), and it is ap-
plied to solve the governing equations in the current nonlinear
strain-based formulation. Details about the integration scheme
can be found in the reference.

3. Numerical studies

The strain-based nonlinear beam formulation is implemented
in the numerical framework UM/NAST: The University of Michi-
gan’s Nonlinear Aeroelastic Simulation Toolbox. In the numerical
studies, geometrically nonlinear static solutions and transient re-
sponses under forced dynamic excitations in UM/NAST are studied
and compared to those from displacement-based MSC.Nastran
(2003) and mixed-form UM/NLABS (Palacios and Cesnik, 2008).
3.1. Geometrically nonlinear static solution

Consider a slender cantilever isotropic beam whose geometric
and physical properties are listed in Table 1. As shown in Fig. 6, a
concentrated force is applied at the beam tip, with its axial compo-
nent being zero, lateral component Fpt

y being 200 N, and vertical
component Fpt

z being 30 N. The beam is solved in UM/NAST,
MSC.Nastran, and UM/NLABS, respectively, with the beam discret-
ization varied from 2 to 20 elements. CBEAM element is selected in
the MSC.Nastran model. Note that if the beam is divided into n ele-
ments, the dimensions of the models are 4 � n in the UM/NAST
model, 6 � n in the MSC.Nastran model, and 12 � n in the UM/
NLABS model, respectively. The lateral and vertical tip displace-
ments obtained from the three solutions are plotted in Fig. 7 with
the change of model dimensions. From the comparison, it is evi-
dent that to reach the same converged solution, the dimension of
the strain-based model is smaller than the other two, especially
the mixed-form model. Therefore, the strain-based formulation
can capture the nonlinear beam deformation with fewer degrees
of freedom. One may find another advantage of the strain-based
formulation by looking into the solution procedures of the three
solutions. The strain-based solution only needs a one-time inver-
sion to the stiffness matrix, since this matrix is constant for the
beam configuration. The others require updating the stiffness ma-
trix iteratively due to the geometric stiffening effect when the
beam is loaded. Therefore, the inversion operation to the stiffness
matrix is required at each time when the stiffness matrix is up-
dated. This advantage of the strain-based formulation makes it effi-
cient in solving geometrically nonlinear static problems.
3.2. Transient response of split-beam

This section is to verify the kinematic formulation of split-beam
systems. Fig. 8 exemplifies a split-beam system with two branches
splitting from each other. The split-beam has the same cross-sec-
tional properties as the single cantilever beam used previously.
Each of the branches is discretized into 10 elements in both UM/
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NAST and MSC.Nastran models. A sinusoidal vertical force is ap-
plied at the front tip, given by

Fpt
z ðtÞ ¼

0 N ðt < 0Þ
AF sin xFt N ðt P 0Þ



ð71Þ

with AF = 30 N and xF = 20 rad/s. The time responses of both tips are
plotted in Fig. 9 and compared with the results from MSC.Nastran.
The time steps used are 0.0025 s in UM/NAST and 0.002 s in
MSC.Nastran to reach the converged results. The two sets of results
are on top of each other.

3.3. Transient response of beam with relative displacement constraint

The Lagrange multiplier formulation for relative nodal displace-
ment constraints is tested in this section. Beams with absolute
nodal displacement constraints are not discussed here since they
are generally not applicable to aircraft structures. For a joined-
beam model, the two cantilever beam members meet at their tips.
The cross-sectional properties of each beam member are still the
same as defined before, with the geometry shown in Fig. 10. Each
beam member is discretized into 20 elements in both UM/NAST
and MSC.Nastran models.

To test the time simulation for the joined-beam model with the
relative displacement constraint, a sinusoidal force governed by Eq.
(71) is applied at the common tip of the two members in the ver-
tical direction, with AF = 60 N and xF = 20 rad/s. Results from UM/
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Fig. 8. Model description of a split-beam system.
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Fig. 10. Model description of a joined-beam system.
NAST and MSC.Nastran are compared in Fig. 11. The time steps
used are 0.002 s in UM/NAST and 0.0016 s in MSC.Nastran. Good
agreement between the two sets of results can be observed. In
addition, the accuracy of the modeling of the relative nodal dis-
placement constraints using the strain-based formulation may be



0 0.5 1 1.5 2 2.5 3 3.5 4
−0.06
−0.04
−0.02

0
0.02

U
x

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.02
−0.01

0
0.01
0.02

U
y

Ti
p 

di
sp

la
ce

m
en

t, 
m

 

 

UM/NAST MSC.Nastran

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.30
−0.15

0
0.15
0.30

U
z

Time, s

Fig. 11. Tip displacement of the joined-beam under vertical tip load.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1 x 10−12

U
x

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5 x 10−7

U
y

D
iff

er
en

ce
 b

et
w

ee
n 

tw
o 

tip
 d

is
pl

ac
em

en
ts

, m

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5 x 10−12

U
z

Time, s

Fig. 12. Difference between the displacements of the two tips in the joined-beam
under vertical tip load (results from UM/NAST).

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.06
−0.04
−0.02

0
0.02

U
x

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2 x 10−3

U
y

Ti
p 

di
sp

la
ce

m
en

t, 
m

 

 UM/NAST UM/NLABS

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.4
−0.2

0
0.2
0.4

U
z

Time, s

Fig. 13. Tip displacement of the cantilever composite beam under vertical tip load.

W. Su, C.E.S. Cesnik / International Journal of Solids and Structures 48 (2011) 2349–2360 2359
examined by comparing the two beam tips’ displacements from
UM/NAST (Fig. 12). The displacements are almost identical, while
demonstrating some numerical differences at a few time steps.
The maximum difference between the two tip displacements is
at the order of 10�7, compared to the beam span. Therefore, the
modeling of the nodal displacement constraint is correct.
3.4. Transient response of cantilever composite beam

Composite materials are widely used in aircraft structures. This
section illustrates the capability of the strain-based formulation in
Table 2
Properties of the cantilever composite beam.

Mass per span (m) 0.185 kg/m k11 2.23 � 106 N
Span (L) 1.00 m k12 0 N m
Ixx 5.84 � 10�4 kg m k13 �1.47 � 103 N m
Ixy 0 kg m k14 �5.24 � 104 N m
Ixz 0 kg m k22 63.2 N m2

Iyy 1.05 � 10�5 kg m k23 0 N m2

Iyz 2.87 � 10�6 kg m k24 0 N m2

Izz 5.74 � 10�4 kg m k33 1.26 � 102 N m2

ry �2.36 � 10�2 m k34 34.7 N m2

rz 6.11 � 10�4 m k44 6.92 � 103 N m2
solving composite beams. A slender composite beam is created
with the geometric and physical properties listed in Table 2. The
mixed-form solution from UM/NLABS (Palacios and Cesnik, 2008)
is used for the comparison with that of UM/NAST. The wing is dis-
cretized into 20 elements in both UM/NAST and UM/NLABS
models.

A sinusoidal point force governed by Eq. (71) is applied at the
beam tip in the vertical direction, with AF = 100 N and
xF = 20 rad/s. The root of the beam is fixed. The tip displacements
of the beam are plotted in Fig. 13. The time steps used in UM/NAST
and UM/NLABS are both 0.001 s. All results are showing good
agreement. Note that the kinematics for split-beam systems and
the Lagrange multiplier formulation for absolute and relative nodal
displacement constraints are still applicable to composite beams.
The strain-based formulation has been applied to the nonlinear
aeroelastic analysis of very flexible aircraft with composite wings
(Cesnik and Su, 2005).
4. Conclusions

A strain-based geometrically nonlinear beam formulation was
presented, which is able to capture the arbitrarily large deforma-
tions of slender structures. With beam extension strain and bend-
ing/twist curvatures as independent degrees of freedom, the
strain-based beam formulation makes no approximation to the
deformation of beam reference line. Therefore, this formulation is
geometrically exact and can accurately model the composite beam
deformation. The strain-based formulation features fewer degrees
of freedom than the displacement-based and the mix-form formu-
lations to represent the same deformation complexity. In addition,
this formulation solves directly for the beam curvatures that are
the variables measured by typical sensors in control studies (e.g.,
strain gages). It also provides a constant generalized stiffness ma-
trix, which greatly simplifies geometrically nonlinear static solu-
tions. The strain-based beam formulation can effectively catch
the geometrically nonlinear behavior of flexible isotropic and com-
posite wings and provide the structural dynamic models for non-
linear aeroelastic and control studies of very flexible slender
structures.

The beam equations of motion are derived through the principal
of virtual work. Finite-element approach is used to solve the
equations. To facilitate modeling of complete flexible aircraft, multi-
ple-connected and statically indeterminate beam systems are con-
sidered. Kinematic relations of the strain-based formulation are
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developed to model split-beam systems. Nodal displacement con-
straints are introduced through the Lagrange multiplier method.
With the formulation for these complex beam configurations, arbi-
trary aircraft configurations can be modeled with the strain-based
formulation.

The strain-based beam formulation, including the kinematics
for split-beam systems, and the relative (inter-member) nodal dis-
placement constraints, is compared to the displacement-based for-
mulation (MSC.Nastran) and the mixed-form formulation (UM/
NLABS). Results have shown that the strain-based formulation
can capture the nonlinear beam behavior as what the displace-
ment-based and the mixed-form formulations can do, with the
advantages of requiring fewer degrees of freedom to model the
arbitrary complex beam deformation. As one implementation of
the strain-based beam formulation, UM/NAST (The University of
Michigan’s Nonlinear Aeroelastic Simulation Toolbox) has been
successfully used for the coupled nonlinear aeroelastic, flight dy-
namic, and control studies of different very flexible aircraft.
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