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In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of

beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets.

The direct solution is obtained by numerically integrating the beam structural dynamic equation using an explicit

Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets.

Furthermore, in real-time operation, the bending strain of the beam is measured by fiber-optical sensors at discrete

locations along the span, whereas both the angular velocity and translational acceleration are measured at a single

point by an inertialmeasurement unit.Another aspect in this paper is finding the analytical andnumerical solutions of

the beam dynamics based on limited measurement data to facilitate the real-time control development. Numerical

studies demonstrate the accuracy of these real-time solutions of the beam dynamics. Such analytical and numerical

solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to

increase launch availability by processing flight data into the flexible launch vehicle’s control system.

Nomenclature

A = coefficient matrix using Legendre polynomials to
approximate finite element model modes

aB = beam base excitation acceleration, m∕s2
az = nodal translational acceleration in lateral direction,

m∕s2
b = beam cross-section thickness, m
C = beam damping matrix of finite element model
E = beam Young’s modulus, Pa
EIy = beam bending rigidity, N ⋅m2

F = beam load vector of finite element model
h = beam cross-section width, m
K = beam stiffness matrix of finite element model
L = beam span, m
M = beam mass matrix of finite element model
m = beam mass per unit length, kg∕m
Pn = shifted Legendre polynomials
p = lateral distributed load of beam, N∕m
s = inertial measurement unit location, m
t = time, s
u = beam nodal translation and rotation of finite element

model
w = nodal lateral displacement due to beam bending, m

x = spanwise position along beam, m
z0 = distance from beam reference line to locations of fiber-

optic sensors, m
α = damping coefficient
α1, α2 = tuning parameters in numerical integration
εx = tensile/compressive strain due to bending
η = magnitude of modes
θ = nodal rotation due to beam bending, rad
κy = bending curvature, 1∕m
ξ = general coordinate
ρ = beam material density, kg∕m3

Φ = beam bending mode shape matrix
φ = individual beam bending mode shape vector
ω = beam bending natural frequencies, Hz
ωy = nodal angular velocity about y direction, rad∕s

I. Introduction

T HE study of flight dynamics of rockets involves themodeling of
the airframe, the propulsion, and the aerodynamic loads acting

on the airframe. Traditionally, rockets are considered as rigid bodies
in their flight dynamic modeling [1–5]. The six-degree-of-freedom
dynamic equations describing the trajectory of the rigid body are
usually established by applying Newton’s second law or Lagrange’s
equation [6]. Another study [7] modeled a rocket as an assemblage of
multiple-hinged rigid bodies. Such modeling allows for consid-
eration of the transverse vibration of the rocket and its aeroelastic
behavior due to the interaction with the aerodynamic loads. Future
rockets are likely to be larger, with more capacity to launch heavier
payloads. At the same time, the structural weight fraction of the new
rocket airframes will need to be reduced to accommodate more
payloads and fuel. Consequently, this will result in much more
flexible rocket designs. For flexible rockets, their transverse bending
vibration may be easily excited by lateral aerodynamic loads, which
may significantly impact the attitude control system’s stability if the
control system is designed based on a rigid-body model [8]. To take
into account airframe flexibility, different approaches have been
applied in the modeling of rocket flight dynamics, such as the linear
beam approach [9] and flexible multibody approach [10]. Moreover,
adaptive control algorithms have been developed [8], where the
rocket flight dynamic responsewas alsomodeled using a linear beam
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theory. In fact, due to the interactions between flexible structures and
the aerodynamic loads, aeroelastic characteristics and behaviors of
flexible launch vehicles need to be properly modeled in numerical
simulations. An early study by Crimi [11] identified the impacts of
static and dynamic aeroelastic behaviors of flexible tactical weapons
using a linear beammodel. In [12,13], Chae andHodgesmodeled the
flight dynamics of flexible missiles using a mixed-form geometrically
nonlinear beam formulation, coupled with the combined viscous
crossflow theory [14] and the potential flow slender-body theory
[15]. They studied the flight stability of such vehicles and the impact
of the thrust force on their flight stability. In a more recent study,
Bartels et al. [16] studied aeroelastic characteristics and stability of
theAres I launch vehicle by coupling theReynolds-averagedNavier–
Stokes computational fluid dynamics (CFD) solver FUN3D with a
linear modal-based bean model. They suggested that a correct
aeroelastic coupling model was needed to predict dynamic flexible
vehicle behavior, especially in the transonic flight region. The work
also provided a good summary of different approaches for modeling
the aeroelasticity of flexible launch vehicles.
However, during an individual launch, the excitation and loading

on the flexible rocket, especially the instantaneous lateral aero-
dynamic loads acting on the flexible body, may not be available from
measurements. Atmospheric wind gust is random and difficult to
predict in an individual launch. Measurements from onboard sensors
may be used to directly track the dynamics of the vehicle and further
control it. For example, fiber-optic sensors (FOSs) can be used to
measure the strain of a flexible body [17]. Recently, FOS systems
have been applied in aircraft and launch vehicle development at the
NASA Armstrong Flight Research Center [18] and Kennedy Space
Center [19]. During the launch, FOS systems are able to observe the
bending/torsion deformation of the airframe. It is also of interest to
potentially use the measured structural deformation from the FOS
system to control the bending/torsion vibration of the flexible rocket,
with appropriately designed control algorithms. Additionally, both
the angular velocity and translational acceleration can bemeasured at
a single point by the inertialmeasurement unit (IMU) to provide some
dynamic characteristics of the rocket. Figure 1 illustrates the distribution
of the sensors and measurements along a beam representation of a
flexible rocket. Such information will be the only input to an indirect
solution (compared to the traditional solutions of launch vehicles
with thrust and aerodynamics loads predicted from corresponding
numericalmodels) of the beamdynamics. The indirect solution needs
to provide the beam bending dynamics, including the angular
velocity and translational acceleration along the beam, for further
control development for flexible rockets. An operational constraint
thatmust be considered in this solution is the sampling frequencies of
the sensors and the onboard computer. Basically, the sampling
frequencies of FOSs and IMUs are 1000 and 100 Hz, respectively,
whereas the onboard autopilot system operates at a lower frequency
of 50 Hz. Theoretically, the beam bending dynamics should be

computed within, at most, 0.02 s based on those sampling frequencies.
An even faster solution will be required to allow for the response of the
control system and data processing. From this point of view, a very fast
indirect beam dynamics solution is needed to support the real-time
control operation of flexible rockets, taking advantage of the onboard
FOS and IMUmeasurements. The functional blocks of this solution are
illustrated in the top path of Fig. 2, with the shaded block to be
implemented in the real-time sense to satisfy the operation requirement.
This paper basically focuses on the dynamic beam solutions. A

control algorithm, based on a testing beam article, has been
implemented using MATLAB/Simulink [20], where the indirect
solution from the current study is integrated. However, further
development of control algorithms that are suitable for practical
applications in full-size flexible rockets is still ongoing. In this
process, it is desired to have a numerical tool to simulate the real-time
behavior of flexible rockets, and thus to facilitate benchmarking
different control algorithms for the altitude control of the rockets.
Therefore, the current work also aims at developing a real-time
dynamic simulation for flexible rockets. This is shown as the bottom
path in Fig. 2, where a direct solution of the real-time beam dynamics
is sought. The linear Euler–Bernoulli beam theory will be applied to
model flexible rockets. In this development, the first need is a
numerical integration scheme for the beam dynamic equations that is
stable and fast enough to allow for the real-time simulations. Implicit
schemes (e.g., [21]) may provide numerically stable transient
simulation results of dynamic systems. However, the subiterations
inherently associated to these schemes prohibit them from providing
the real-time simulation capability. Therefore, an explicit integration
schemewill be the choice for the real-time simulation, provided that it
maintains the numerical stability of results with relatively larger time
steps, which is also critical to ensure the real-time simulation
capability. The explicit Newmark-based scheme developed by Chen
and Ricles [22] is used in the current study.
Both indirect and direct dynamic beam solutions are developed in

this paper, as highlighted in Fig. 2. The indirect solution intends to
facilitate the real-time control operation using the FOS and IMU
measurement data during the launch of a flexible rocket, whereas the
direct solution can be used to benchmark the rocket attitude control
algorithms. Particularly, in this study, due to the lack of real sensor
measurement data during the launch, the direct solution of the beam
dynamics can be used as the input for the indirect solution, as the
dashed line shows in Fig. 2. Because the bending mode has a strong
contribution to the attitude control of flexible rockets, only the one-
dimensional bending of the beam is considered in this study, with a
base motion to excite the beam. The aeroelastic effect is not involved
in the direct solution. Additionally, it has been shown that
longitudinal forces (thrusts) may impact the bending behavior of a
flexible launch vehicle [12,13,23]. This effect is not involved in the
current study, but the solution approaches developed can be adapted
to include multiaxial loading conditions. The analytical solution and
the numerical implementation of this work will have the potential to
increase launch availability by processing real-time flight data
(including the deformation and kinematics) into the flexible launch
vehicle’s control system.

II. Theoretical Formulation

Flexible rockets are modeled as linear beams by taking advantage
of their geometry. A specific constraint to the current study is that the
beam dynamic responses should be solved at a real-time rate.
Therefore, the solutions of the beam bending equations of motion
need some special treatment.

A. Euler–Bernoulli Beam Equation of Motion

In the current study, a flexible rocket is modeled using Euler–
Bernoulli beam theory. As shown in Fig. 3, the flexible rocket is
treated as a cantilever beam in amoving frame (xyz) that is fixed at the
root. The aerodynamic loads of the rocket are not included in this
study. However, the rocket’s lateral bending vibration can be excited
by a base acceleration aB�t�. So, the lateral distributed force p�x; t�
along the beam is derived from the base acceleration:

z

y

x

TVC 
actuator

Base
excitation

Fig. 1 Beam representation of flexible rocket and the distribution of
sensor measurements (TVC, thrust vector control; comp., component;
Norm., normalized).
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p�x; t� � −m�x�aB�t� (1)

wherem�x� is the mass per unit length of the beam. Only the flatwise
bending about the y axis is considered. The equation ofmotion for the
beam is given as

�EIy�x�w 0 0�x; t�� 0 0 �m�x� �w�x; t� � p�x; t� (2)

where w�x; t� is the beam’s lateral displacement relative to the
moving frame xyz, andEIy�x� is its bending rigidity about the y axis.
The cross section of the beam model is obtained from a testing beam
article with a solid cross section. The warping of the cross section is
not considered. Note that (⋅⋅) denotes the second time derivative,
whereas �� 0 and �� 0 0 denote spatial partial derivatives of the
corresponding variable. The cantilever boundary condition should be
satisfied. In general, the inertial and rigidity properties of a
representative beam model derived from a rocket are not uniform
along its span and several rigid-body masses (e.g., the boosters and
payloads) may be attached to the rocket. Therefore, the analytical
solution to Eq. (2) is usually not available for a rocket bending
problem and the finite element approach is used to solve the
governing equation. The finite element discretization of Eq. (2) using
two-node beam elements results in the following second-order
differential equation:

�M�f �ug � �C�f _ug � �K�fug � fFg (3)

Each beam node has a translational w and a rotational θ degree of
freedom, i.e.,

fuig �
�
wi

θi

�
�

�
wi

w 0
i

�
(4)

where the rotational degree is the spatial derivative of the translational
degree, according to Euler–Bernoulli beam theory. The inertia [M]
and stiffness [K] matrices are obtained from the assemblage of the

elemental matrices. In the initial finite element model, a stiffness-

proportional damping is assumed:

�C� � α�K� (5)

In a followingmodal-based transient solution of Eq. (3), the stiffness-

proportional damping is converted to the modal damping using the
modal transformation. The finite element model is compatible to both

uniformandnonuniformbeams.Concentrated inertias, if present, canbe
attached to the corresponding nodes in the finite element model.

B. Kinematics

According to the kinematics of Euler–Bernoulli beams, the tensile
strain due to the beam bending is related to the nodal displacement:

εx�x; t� � −z0w 0 0�x; t� (6)

where z0 is the distance from the beam neutral axis (centerline for this

study) to locations of the FOS, where the strains are measured, which
is usually the surface of the beam. Additionally, the angular velocity

and translational acceleration are

az�x; t� � �w�x; t� ωy�x; t� � _θy�x; t� � _w 0�x; t� (7)

C. Normal Modes and Approximation Using Continuous Functions

The nodal displacement of the beam is considered as a linear
combination of the normal modes, given as

fu�t�g �
XN
j�1

fφjgηj�t� � �Φ�fη�t�g (8)

where φj are the normal modes of the beam, obtained from the

eigenvalue solution of Eq. (3); and ηj are the magnitudes of the
corresponding modes varying in time. The nodal degrees in Eq. (8)

can be reorganized, such that

fw�t�g � �Φw�fη�t�g fθ�t�g � �Φθ�fη�t�g (9)

where [Φw] and [Φθ] are both subsets of [Φ]. Note that the nodal

rotation is essentially a spatial derivative of the nodal translation,

according to Euler–Bernoulli beam theory.
However, the normalmodematrix [Φ] and its subsets derived from

the eigenvalue solution of Eq. (3) are discrete, represented by the
eigendisplacement and rotation at each node of the finite element

model. There are no analytical functions of the mode shapes that are

directly available from the eigenvalue solution of Eq. (3). To estimate
the spatial derivatives of the mode shapes in Eqs. (6) and (7) at any

spanwise position along the beam, the discrete mode shapes can be
approximated by using some analytical functions. In the current

study, this is done by using the shifted Legendre polynomials [24],
which are a set of complete and orthogonal polynomials defined in

the domain of [0,1]. The general equations for the shifted Legendre
polynomials are given as

P0�x� � 1; P1�x� � 2x − 1;

Pi�1�x� �
�2i� 1��2x − 1�Pi�x� − iPi−1�x�

i� 1
(10)

The first few shifted Legendre polynomials are plotted in Fig. 4.

Physical vehicle in
launch

Numerical model

Launch
vehicle

Real-time control
development

Numerical vehicle
behavior data

Direct numerical
integration

FOS/IMU
measurement

Engine excitation,
aerodynamics

Indirect solution
Real-time vehicle

behavior

Input for
verification

Fig. 2 Block diagram of the real-time solutions for flexible launch vehicles.
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z

y

z
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Fig. 3 Description of a continuous beam and its finite element
discretization.
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Linear combinations of Legendre polynomials can be used to fit

any functions. Any discrete mode shape φj can be fitted by linear

combinations of the first m� 1 shifted Legendre polynomials:

fφjwg �
X∞
i�0

aijfPig ≈ a0jfP0g � a1jfP1g� · · · �amjfPmg (11)

where φjw consists only of the translational components of the jth
mode.Pi are the shifted Legendre polynomials evaluated at the nodal

coordinates of the finite elementmodel. The coefficients aij are yet to
be determined. This approximation can be done for all modes

(translational components only), resulting in

�Φw� � �φ1w φ2w · · · φnw �

� �P0 P1 P2 · · · Pm �

2
666666664

a01 a02 · · · a0n

a11 a12 · · · a1n

a21 a22 · · · a2n

..

. ..
.

· · · ..
.

am1 am2 · · · amn

3
777777775

� �P��A� (12)

Therefore, the coefficient matrix [A] is solved by

�A� � �P�−1�Φw� (13)

with given mode shapes [Φw]. The dimension of [P] is determined by

the dimension of the initial finite element model and the number of the

shifted Legendre polynomials used in the approximation. Thus, it is

generally invertible. Instead, the Moore–Penrose pseudoinverse of [P]
is used. Once [A] is determined, the spatial derivatives of the beam

spanwise deformation are obtained by differentiating the continuous

polynomialsP�x�, according to Euler–Bernoulli beam theory, yielding

fw�x; t�g � �P�x���A�fη�t�g
fw 0�x; t�g � fθy�x; t�g � �P 0�x���A�fη�t�g
fw 0 0�x; t�g � f−κy�x; t�g � �P 0 0�x���A�fη�t�g (14)

FromEqs. (6), (7), and (14), one can find the strain, angular velocity,

and translational acceleration at any spanwise locations along thebeam:

εx�x; t� � −z0�P 0 0�x���A�fη�t�g
ωy�x; t� � �P 0�x���A�f_η�t�g
az�x; t� � �P�x���A�f�η�t�g (15)

The matrix [A] is only calculated once for a given beam, as long as

the finite element model and the involved Legendre polynomials are

both fixed. �P��A� is an approximation to the mode shapes of the beam,

and [A] does not change with the applied loads. If a different beam

theory with independent nodal translations and rotations (e.g., the

Timoshenko beam) is used to create the finite element model, the

approximation of the translational and rotational mode shapes should

be completed individually.

D. Modal Transformation of Equation of Motion

To reduce the number of degrees of freedom and save time in real-

time transient simulations, a modal transformation is performed with

Eq. (3). To be consistent with the transformation of mode shapes into

the combinations of the shifted Legendre polynomials, complete

mode shapes from the finite element equation (consisting of both

nodal translations and rotations) are represented as

�Φ� � � �P��A� (16)

where each column of [P−] is formed by alternate components from

[P] and [P 0]. Therefore, the finite element solution is represented by

the shifted Legendre polynomials as

x
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Fig. 4 First seven shifted Legendre polynomials.

Table 1 Properties of a uniform beam

Property Value

Span L, m 1.575
Cross-section thickness b, m 4.826 × 10−3

Cross-section width h, m 2.543 × 10−2

Material density ρ, kg∕m3 2.666 × 103

Young’s modulus E, Pa 6.350 × 1010

Table 2 Natural frequencies (in hertz) of the uniform cantilever beam

Finite element solution

Mode 5 elements 10 elements 14 elements 20 elements
Analytical
solution

1 1.5343 1.5343 1.5343 1.5343 1.5343
2 9.6201 9.6156 9.6154 9.6153 9.6153
3 27.020 26.930 26.925 26.924 26.923
4 53.377 52.809 52.772 52.762 52.759
5 88.593 87.434 87.274 87.229 87.214
6 147.18 130.99 130.48 130.33 130.28
7 215.25 183.78 182.49 182.10 181.96
8 312.16 246.21 243.46 242.57 242.26

Number of elements
2 4 6 8 10 12 14 16 18 20

R
el

at
iv

e 
er

ro
r 

in
 fr

eq
ue

nc
y

10-6

10-5

10-4

10-3

10-2

10-1

100

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6

Fig. 5 Relative errors of natural frequencies from the finite element
solutions, compared with the analytical solutions.
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fu�t�g � �Φ�fη�t�g � � �P��A�fη�t�g (17)

Substituting Eq. (17) into Eq. (3) and premultiplying [�A�T �P−�T on
both sides of the equation yields themodal-based equation ofmotion:

� �M�f�ηg � � �C�f_ηg � � �K�fηg � f �Fg (18)

where

� �M� � �A�T � �P�T �M�� �P��A�
� �C� � �A�T � �P�T �C�� �P��A�
� �K� � �A�T � �P�T �K�� �P��A�
f �Fg � �A�T � �P�TfFg (19)

The time-domain transient analysis of the flexible rocket can be

done with either Eq. (3) or Eq. (18). However, Eq. (18) usually

involves significantly fewer degrees of freedom than Eq. (3).

E. Direct Solution

The numerical integration of the equation of motion [Eq. (3) or

Eq. (18)] is needed to obtain the transient response of the flexible

rocket. An explicit numerical integration scheme is selected over

implicit approaches to provide fast solutions of the beam dynamic

response, facilitating the real-time simulations. The explicit

integration scheme developed by Chen and Ricles [22,25], which
has been proved to be unconditionally stable [25], is implemented
here. This allows for the use of relatively larger time steps in transient
solutions while maintaining numerical stability. For a second-order
equation of motion [Eq. (3) or (18)], the “velocity” and
“displacement” at each time step are determined by
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Fig. 6 Improperly fitted mode shapes using excessive Legendre polynomials.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.25

0.5

0.75

1

T
ra

ns
la

tio
na

l c
om

p.

Analytical
FEM solution
Fitted from FEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized beam span

0

0.25

0.5

0.75

1

R
ot

at
io

na
l c

om
p.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

T
ra

ns
la

tio
na

l c
om

p.

Analytical
FEM solution
Fitted from FEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized beam span

-10

-5

0

5

10

R
ot

at
io

na
l c

om
p.

a) First bending mode b) Fourth bending mode

Fig. 7 Cantilever beam bendingmode shapes from analytical and finite element (20 elements) solutions and the fitted continuous shape (using 20 shifted
Legendre polynomials).
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_ξi�1 � _ξi � α1 �ξiΔt ξi�1 � ξi � _ξiΔt� α2 �ξiΔt2 (20)

where ξ is the general coordinate of either u or η, and the tuning

parameters are

α1 � α2 �
4� ~M�

4� ~M� � 2� ~C�Δt� � ~K�Δt2 (21)

The matrices with a “tilde” are the general mass, damping, and

stiffness matrices from either Eq. (3) or Eq. (18).
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Fig. 9 Free–free bending mode shapes from analytical and finite element (20 elements) solutions and the fitted continuous shape (using 20 shifted
Legendre polynomials).
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Fig. 11 Beam tip displacement and translational acceleration from direct integrations of finite element models.
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F. Indirect Solution

As discussed, the instantaneous lateral loads acting on the flexible

rocket may be unknown in an individual launch because of the

randomgust. However, limited sensormeasurements of the strain and

kinematic quantities are available. This capability to find the beam

dynamic solution under such a condition is particularly important in

the real-time control of launch vehicles. In this case, the direct

integration of the equation of motion [Eq. (3) or Eq. (18)] is not

feasible. Instead, an indirect solution of themodalmagnitude η�t� can
be obtained based on the available strain measurements εx�x; t� from
the FOS along the beam, subject to the constraints of the inertial

measurements [ωz�s; t� and ay�s; t�] from the IMU at a single

location of x � s.

1. Strain from FOS

If εx�x; t� is measured by the FOS, the instantaneous modal

magnitudes η�t� are solved from the first equation of Eq. (15):

�B1�fηg � fD1g (22)

where

�B1� � −z0�P 0 0��A� fD1g � εx�x; t� (23)

It can be seen thatB1 contains the system’s modal information and

D1 consists of the instantaneous measurement by the FOS.

2. Angular Velocity from IMU

If ωy�s; t� is measured by the IMU at x � s, the instantaneous

modal magnitudes η�t� should satisfy the following relation derived

from Eq. (15):

f �B2gf_η�t�g � �D2 (24)

where

f �B2g � fP 0�s�g�A� �D2 � ωy�s; t� (25)

A backward finite difference is used to find the rate of the modal

magnitude, i.e.,

_η�t� � _ηt �
ηt − ηt−Δt

Δt
(26)

where the step of Δt is determined by the sampling frequency of the

IMU. Substituting Eq. (26) in Eq. (24) yields

fB2gfη�t�g � D2 (27)

where

fB2g � f �B2g D2 � �D2Δt� f �B2gfηt−Δtg (28)

Obviously, it requires knowing the history of the solution in order

to solve the magnitude η�t�.

3. Translational Acceleration from IMU

If az�s; t� is measured by the IMU at x � s, the instantaneous

modal magnitudes η�t� should also satisfy the following relation

derived from Eq. (15):

f �B3gf�η�t�g � �D3 (29)

where

f �B3g � fP�s�g�A� �D3 � az�s; t� (30)

The approximation of the acceleration of η using the backward

finite difference scheme is

�ηt �
ηt − 2ηt−Δt � ηt−2Δt

Δt2
(31)

Equations (29) and (31) result in

fB3gfη�t�g � D3 (32)

where

fB3g � f �B3g D3 � �D3Δt2 � f �B3gf2ηt−Δt − ηt−2Δtg (33)
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a) Time: 0-10 s b) Time: 9.9-10 s
Fig. 12 Beam tip displacement and translational acceleration from finite element and modal solutions.

Table 3 CPU time vs. complexity of beam models

Model 20 elements 50 elements 100 elements 200 elements 6 modes from 200 elements

Dimension of problem 40 100 200 400 20
Total CPU time, s 1.48 11.81 36.41 165.06 1.56
Average CPU time per step, s 1.48 × 10−3 1.18 × 10−2 3.64 × 10−2 1.65 × 10−1 1.56 × 10−3
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4. Combined Solution

One can solve for the current modal magnitude η�t� that satisfies
the measurements of both the FOS and IMU by combining Eqs. (23),

(27), and (32), which is

fηg � �B�−1fDg (34)

where

�B�T � �BT
1 BT

2 BT
3 � fDgT � fDT

1 DT
2 DT

3 g (35)

In practice, a pseudoinverse of the [B] matrix is required because it

is generally not invertible.
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Fig. 16 Fitted strain, estimated velocity, and acceleration using 200-element FEM simulation data.
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Fig. 15 Fitted strain, estimated velocity, and acceleration using 100-element FEM simulation data.
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Fig. 14 Fitted strain, estimated velocity, and acceleration using 50-element FEM simulation data.
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Fig. 13 Fitted strain, estimated velocity, and acceleration using 20-element FEM simulation data.
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5. Estimation of Spanwise Angular Velocity and Translational

Acceleration

In the last step, one needs to estimate the angular velocity and
translational acceleration along the beam reference line based on the
solution of η and the kinematics. FromEq. (15), the spanwise angular
velocity and translational acceleration are

ωy�x; t� � �P 0�x���A�f_η�t�g � 1

Δt
�P 0�x���A�fηt − ηt−Δtg

az�x; t� � �P�x���A�f�η�t�g � 1

Δt2
�P�x���A�fηt − 2ηt−Δt � ηt−2Δtg

(36)

As can be seen from Eqs. (34) and (36), the indirect solution of the
beam dynamics involves main operation of linear algebra and matrix
operations. The [B] matrix can be fully prearranged if the structural
model is known. One only has to update the fDg vector based on the
sampling data of the IMU and FOS. Therefore, the total
computational cost is very low, which does satisfy the “real-time”
requirement.

III. Numerical Studies

Both the direct and indirect real-time solutions of a representative
beam model are presented in this section. Accuracy of the solutions
will be discussed based on the simulation data.

A. Approximate Mode Shapes of a Flexible Beam

Geometrical and material properties of a beam model are listed in
Table 1. The cross section of the beam is rectangular. The fiber-
optical sensors are assumed to be attached on the wider surface.
Therefore, the distance of the sensors to the beam reference line in the
current study is z0 � b∕2.
The natural frequencies and discrete mode shapes of the beam are

first calculated using the finite element model, with the mesh being
refined. Table 2 and Fig. 5 compare the natural frequencies obtained
from these finite element models and the analytical solutions
obtained by solving the characteristic equation of the continuous
uniform beam. If one needs the relative error of the first five modes
(below 100 Hz; see Table 2) to be less than 0.1%, a 14-element mesh
of the beam is sufficient. However, the purpose of the finite element
model and the eigenvalue solution is to provide the discrete mode
shapes to be fitted by the Legendre polynomials. A finer mesh may
improve the quality of the fitted mode shapes. For this reason, a 20-
element mesh of the beam is used. Once the finite element model is
created, the corresponding number of Legendre polynomials should
be properly selected. Figure 6 plots the fittedmodes of the beamusing
26 shifted Legendre polynomials based on the 20-element mesh.
Even though most of the data points are well fitted, the root and tip
regions exhibit large errors between the fitted modes and those from
the finite element model (FEM) solution. This is because the higher-
order Legendre polynomials have larger slopes at the two ends. Thus,
they need more data points for a proper fit. Figure 7 compares the
good fit with 20 Legendre polynomials instead. The analytical
solutions of the mode shapes are also plotted to verify the accuracy of
the fitted modes.
Onemore verification is to check the derivatives of the fitted mode

shapes. For the cantilever beam, its curvature and slope of the
curvature at the free end must be zero. Correspondingly, the second
and third derivatives of the translational component of the mode
shapes should be zero at the free end, which has been captured by the
fitted modes, as seen in Fig. 8.
The shifted Legendre polynomials can also be used to approximate

mode shapes of other beam configurations. Figure 9 demonstrates
that the mode shapes of a uniform beam with a free–free boundary
condition can be correctly fitted. Figure 10 illustrates how accurately
the modes of a nonuniform beam are approximated, where the
stiffness of the outer half-board of the beam is reduced to the half of
the nominal one.

B. Direct Time Integration

In this section, the root acceleration excitation of the beam is
assumed to be a sinusoidal function of aB � 10 sin�10πt�m∕s2. No
structural damping is included in this simulation. The Chen–Ricles
scheme from [22,25] is implemented for the numerical integrations of
the beam equations. A first study is to numerically integrate the finite
element-based equation [Eq. (3)], where the beam is divided into 20,
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Fig. 19 Estimated translational acceleration along the beam using
different numbers of modes.
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50, 100, and 200 elements, respectively. Figure 11 compares the
resulting beam tip displacement and translational acceleration in the
lateral direction using these models of different meshes. Note that the
sampling frequencies of the FOS and IMU are 1000z and 100 Hz,
respectively, whereas the onboard autopilot system operates at a
lower frequency of 50 Hz. So, the maximum time step to match the
autopilot system is 0.02 s for the numerical simulations. In all
simulations of the current study, the time step is set to 0.01 s to
accommodate any additional delay due to data processing. Further
smaller time steps will obviously increase the difficulty of
implementing the simulations in the real time. Table 3 lists the total
CPU time cost of the entire 10 s simulation and the average CPU time
of one step of each solution with different meshes. Overall, all the
solutions provide very close results of displacement. Theymay show
some discrepancies in the acceleration results from Fig. 11. As the
translational acceleration will be an important quantity to be used for
the real-time control development, it is desired to use a finer mesh to
reach amore accurate solution of the acceleration. However, the finite
element solution using 200 elements, which is believed to be the
closest to the true solution, is far from satisfying the requirement of
the real-time solutions. In fact, only the 20-element model can allow
for the simulation at the real-time rate (i.e., to finish one time step
within 0.01 s), as observed from Table 3. However, its solution
accuracy may not be satisfactory.
To resolve this issue, a modal-based transient solution is used.

Here, the first six modes of the 200-element finite element model are
represented by 20 shifted Legendre polynomials. Note that the sixth
mode is already above the sensitivity range of the autopilot system.
The resulting modal-based equation is still integrated using the
Chen–Ricles scheme. The same time step is used. The CPU time of
the simulation is also listed in the last column of Table 3. The beam tip
displacement and translational acceleration are compared with those

from the 200-element finite element solution (see Fig. 12). The rms
errors of the tip displacement and translational acceleration between
the modal-based solution and the finite element solution using 200
elements are only 7.28 × 10−7 m and 5.22 × 10−2 m∕s2, respec-
tively. From the results, it can be seen that the solution accuracy is
well represented by the modal-based solution using the Chen–Ricles
scheme and the corresponding CPU time is reduced to allow for real-
time studies.

C. Indirect Solution

The indirect solution of the beam dynamics is described in this
section. In the indirect solution, the excitation (particularly the
aerodynamic loads) to the beam is unknown. However, intermittent
strains along the beam span and a single-point angular velocity and
translational acceleration are measured by devices of the FOS and
IMU. The target is to estimate the angular velocity and translational
acceleration along the whole beam span.
In the current study, the transient response from the direct solution

is used as the “measurement” data, even though the input of the
indirect solution should be real measurement data from the sensors
during flight. Specifically, the IMUmeasurements are assumed to be
the angular velocity and translational acceleration data taken at the
80% span from the beam root. Strains are also extracted from the time
simulation data at evenly distributed stations along the beam,
coincident with the nodes of the finite element models. The spanwise
angular velocity and translational acceleration are also going to be
recovered at these points.
The first calculation is based on the transient results of the 20-

element finite element model. The first 20 shifted Legendre
polynomials are used to approximate the first six modes. Then, the
aforementioned approach is used to recover the angular velocity and
translational acceleration along the beam. Figure 13 compares the
measured and fitted strains, as well as the “real” angular velocity and
translational acceleration that are actually extracted from the transient
simulation and the calculated data, all at t � 4 s. Then, the same
calculations are repeated using the 50-, 100-, and 200-element
models, respectively. The results are all plotted in Figs. 14–16. From
the results shown in Figs. 13–16, one can see that the simulation data
from the 20-element finite element model are sufficient to fit the strain
and estimate the angular velocity. However, the estimated translational
acceleration is still very off. One has to use the transient data from the
refined finite element model in order to accurately estimate the
translational acceleration, as shown in Fig. 16.
It is important to understand the impact of the number of modes on

the solution’s accuracy. The transient response from the 200-elelment
finite element model is used as the measurement, and different
numbers of modes are used to represent the beam deformation. Five
different cases involving 2, 4, 6, 9, and 12 modes, respectively, are
studied. All modes are then approximated by 20 shifted Legendre
polynomials. Figures 17–19 compare the fitted strains and estimated

Fig. 20 Measured and fitted bending strains along the beam from 0 to 10 s.

Table 4 RMS error
between recovered and real
translational accelerations

Number of modes
for approximation

RMS error,
m∕s2

1 1.237
2 0.316
3 0.102
4 0.104
5 0.119
6 0.108
7 0.120
8 0.156
9 0.128
10 0.697
11 0.231
12 0.317
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angular velocities and translational accelerations. It is not a surprise

that the two-mode representation of the beam deformation is almost

sufficient to fit the strain (Fig. 17). However, accurate estimations of

the velocity and acceleration along the beam need more modes

(Figs. 18 and 19). Additionally, the inclusion of excessivemodesmay

also compromise the solution of acceleration, which is highlighted by

the result with 12 modes. Table 4 also shows such a trend. In fact,

there needs to be more shifted Legendre polynomials to accurately

approximate the higher-order mode shapes [see Eq. (12)]. A fixed

number of 20 shifted Legendre polynomials may not be sufficient for

the higher-order mode involved in the table. On the other hand,

because the autopilot system works at 50 Hz, it is not sensitive to the

higher-order modes anyway. Therefore, involving more higher-order

modes and using more shifted Legendre polynomials are

unnecessary. In the current study, the first six modes are retained in

the modal solution.
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Fig. 23 Absolute and relative errors of estimated translational acceleration without structural damping.

Fig. 22 Actual and estimated translational accelerations along the beam from 0 to 10 s.

Fig. 21 Actual and estimated angular velocities along the beam from 0 to 10 s.
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For the indirect solution performed so far, it is all at t � 4 s. The
solution process is repeated in the time range of 0 to 10 s. Data from

the direct time integration, including the bending strain along the
beam (as the FOS measurements) as well as the angular velocity and
translational acceleration at the 80% beam span (as the IMU
measurements) are extracted and serve as the input to the indirect
solution. Figures 20–22 compare the spanwise bending strain,

angular velocity, and translational acceleration between the indirect
solution and the measurement or “actual” data (essentially, results

from the direct time integration). Because the prediction error of
spanwise acceleration is usually higher than that of the velocity, due
to the second-order finite difference used in Eq. (31), its accuracy is
studied here. At a given time, the relative error of the acceleration
estimation is defined as

ea�t� �
aerr�t�
�a�t� (37)

where

Fig. 26 Actual and estimated translational accelerations along the beam from 0 to 10 s, with structural damping.

Fig. 24 Measured and fitted strains along the beam from 0 to 10 s, with structural damping.

Fig. 25 Actual and estimated angular velocities along the beam from 0 to 10 s, with structural damping.
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aerr�t� �
��������������������������������������������������������������
1

Nxi

X
xi

�az1�xi; t� − az2�xi; t��2
s

�a�t� �
������������������������������������
1

Nxi

X
xi

az2�xi; t�2
s

(38)

where xi are all locations of the FOSs, az1 are the spanwise
accelerations estimated from Eq. (36), and az2 are the real spanwise
accelerations of the beam at time t. Again, they are essentially results
from the direct time integration. Based on the equations, the time
histories of the absolute and relative errors (aerr and ea, respectively)
are plotted in Fig. 23. Generally, the relative error of the acceleration
estimation is low, with singular points when the average acceleration
�a is close to zero. From the results, it is evident that the accuracy of the
indirect solution is well maintained throughout the time range.
Finally, damping is considered for the beam, where the stiffness-

proportional damping coefficient α is assumed to be 0.002. The
modal-based transient simulation of the damped system is
performed, such that the bending strain along the beam (as the FOS
measurements) as well as the angular velocity and translational
acceleration at the 80% beam span (as the IMU measurements) are
extracted and serve as the input to the indirect solution. The indirect
solution is also repeated in the time range of 0 to 10 s. Figures 24–26
compare the spanwise bending strain, angular velocity, and
translational acceleration between the indirect solution and the
measurement or actual data (essentially, results from the direct time
integration). Figure 27 plots the time histories of the estimation errors
of the translational acceleration. From the side-to-side comparisons,
one can see the indirect solution approach is also applicable to
damped systems, even though the damping was not considered in the
original development of the indirect solution process.

IV. Conclusions

Based on Euler–Bernoulli beam theory, analytical and numerical
approaches were derived and implemented in this paper for real-time
solutions of the bending dynamics of flexible rockets. The finite
element discretization of the beam model was used at the beginning,
where the discrete mode shapes were extracted and represented by
using continuous shifted Legendre polynomials. This treatment
allowed for the spatial derivatives of the finite element model’s
discrete mode shapes in order to represent the rotation and curvature
as continuous functions.
By implementing an explicit Newmark-based scheme, the direct

time integration of the beambending equation could be finished in the
real-time rate. In real-time control operations of flexible rockets, the
external excitation to the vehicle may not be known. To enable
control of flexible rockets in real-time, an indirect solution of beam
bending dynamics was also explored in the paper, where only limited

beam bending strains and kinematic quantities were measured. To
find the distributed bending dynamics along the beam, the modal
magnitude of the beam was solved by taking advantage of the
approximation of the modes using the shifted Legendre polynomials,
subject to the available sensor measurements. A backward finite
differencewas used to calculate the rate and acceleration of themodal
magnitudes. This study successfully established a quick, non-
iterative, analytical solution of the beam dynamics, based on the
available sensor measurements. Each of the indirect solutions could
be finished in about 10−3 s, which satisfied the requirement of further
real-time control developments, as this was much faster than the
sampling rates of an onboard FOS, IMU, and autopilot system. The
solution was accurate and stable for perfect measurement data
because the spanwise angular velocity and translational acceleration
were both precisely estimated. The derived formulations were
capable of handling 1) nonuniform beam stiffness, 2) nonuniform
inertia distribution, 3) different IMU locations, 4) various boundary
conditions, and 5) potential two- or three-degree-of-freedom beam
bending and torsion.
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