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In this paper, an aeroelastic formulation is developed to analyze aeroelastic behavior of flexible airfoils with

arbitrary camber deformations. The camberwise bending deformation of flexible airfoils, described by using the

orthogonal Legendre polynomials, is considered in addition to traditional rigid-body plunging and pitchingmotions.

The complete set of aeroelastic equations of motion is derived by following Hamilton’s principle, where a two-

dimensional finite-state unsteady aerodynamic theory is applied to calculate the aerodynamic loads of flexible airfoils

with both rigid-body motions and arbitrary camber deformations. The finite-state aerodynamic theory is also

modified to involve magnitudes of the Legendre polynomials in the aerodynamic load equations. The aeroelastic

equations, featuring rigid-body motions and camber deformation magnitudes as independent degrees of freedom,

may facilitate the analysis of camber effects on aeroelastic characteristics of flexible airfoils. Numerical studies of this

paper validate the developed aerodynamic and aeroelastic formulations by comparisonwith otherpublished research

and computational results. Finally, the impacts of camber flexibility on static and dynamic aeroelastic characteristics

of flexible airfoils are explored.

Nomenclature

A = state-space systemmatrix of aeroelastic system
a = dimensionless location of elastic axis, d∕b
b = semichord of airfoil, m
�b = coefficients for inflow states
~C = aeroelastic damping matrix
d = distance of midchord point in front of elastic

axis, m
E, F1, F2, F3 = coefficients for inflow equation
EI = chordwise bending rigidity of airfoil, N ⋅m
h = camber deformation of airfoil, m
hn = Glauert expansion of camber deformation of

airfoil, m
Iα = mass moment of inertia of airfoil, kg ⋅m
Iη = camberwise inertia of airfoil, kg∕m
~K = aeroelastic stiffness matrix
Kα = torsional spring constant per unit span, N
Kη = camberwise rigidity of airfoil, N∕m2

Kη = equivalent camberwise rigidity of airfoil due to
coupling with plunging, N∕m2

Kξ = linear spring constant per unit span, N∕m2

Kξη = coupled rigidity of airfoil between plunging
and camber deformation, N∕m2

L = aerodynamic lift on airfoil, N∕m
Ln = generalized aerodynamic loads, N∕m
M = aerodynamic moment on airfoil, N
~M = aeroelastic inertia matrix
m = total mass of airfoil, kg∕m
m̂ = mass per unit chordwise length of airfoil,

kg∕m2

N = number of inflow states defined on airfoil
N = camberwise aerodynamic loads on airfoil,N∕m
Pi = Legendre polynomials, i � 0; 1; 2; 3; : : :
p = aerodynamic pressure, Pa

q = dynamic pressure, N∕m2

rα = dimensionless radius of gyration
r1, r2, r3 = ratios between different rigidity entries in static

aeroelastic analysis
Sα = structural imbalance of airfoil, kg
s = matrix relating Legendre polynomials and

Chebyshev polynomials
T = kinetic energy of airfoil, J∕m
Ti = Chebyshev polynomials of the first kind,

i �; 1; 2; 3; : : :
U = potential energy of airfoil, J∕m
Uf = flutter boundary, m∕s
U0 = freestream velocity, m∕s
un = Glauert expansion of airfoil horizontal velocity,

m∕s
vn = Glauert expansion of airfoil vertical velocity,

m∕s
W = external work on airfoil, J∕m
xα = dimensionless location of center of gravity
α = rigid-body pitching of airfoil, rad
α0 = zero lift line angle, rad
α0 = pitching angle when torsional spring is

unstretched, rad
η = magnitude of Legendre polynomials, m
λ = inflow states, m∕s
λ0 = inflow velocities, m∕s
ξ = rigid-body plunging of airfoil, m
ρ = air density, kg∕m3

ωα = airfoil nominal natural frequency of pitching,
rad∕s

ωη = airfoil nominal natural frequency of first
bending, rad∕s

ωξ = airfoil nominal natural frequency of plunging,
rad∕s

I. Introduction

AT THE advent of recent developments in advanced composites
as well as sensor and actuator technologies, in-flight adaptive

wing morphing is now becoming a tangible goal. With the morphing
technologies, wing and aircraft performances (e.g., aerodynamic
drag, flight range, endurance, maneuverability, gust rejection, etc.)
can be passively or actively tailored according to a wide range of
flight conditions, while maintaining the flight stability. Traditionally,
discrete control surfaces were used to redistribute the aerodynamic
loads along the wingspan during the flight, so as to tailor the aircraft
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performance. However, the deflection of discrete surfaces, while
providing the desired lift control, may increase the aerodynamic drag.
To address this issue, different techniques had been applied to explore
more efficient approaches to control the wing loading, improve the
aircraft performance, and reduce the drag.An effective alternative has
been to introduce conformal wing/airfoil shape changes for the
aerodynamic load control. Advantages may be gained with the
camber variations along the wingspan [1] (e.g., adaptive
redistribution of the wing loads, reduced wing root bending
moments, reduced drag, etc.). FlexSys, Inc.,with the support from the
U.S. Air Force Research Laboratory (AFRL), developed a compliant
trailing-edge concept in their Mission Adaptive Compliant Wing
(MACW) project [2]. With a piezoelectric actuator driving the
compliant morphing mechanism, it was shown that the continuous
wing trailing edge was able to deflect about�10 deg [3]. In Bilgen
et al. [4], a cantileverwing platformwas designed and experimentally
tested for the camber changes with active piezoelectric actuations. In
rotorcraft application, the optimal airfoil design was studied for the
control of airfoil camber [5]. Recently, in an effort to achieve a low-
drag, high-lift configuration, a flexible transport aircraft wing using
thevariable camber continuous trailing-edge flaps (VCCTEF) to vary
the wing camber is being studied at NASA Ames Research Center.
The studies showed that the highly flexiblewing, if elastically shaped
in-flight by active control of wing twist and bending, may improve
aerodynamic efficiency through reduced drag during cruise and
enhanced lift performance during takeoff and landing [6]. Nguyen
and Ting [7] identified the flutter characteristics of the wing using a
linear beam formulation and vortex-lattice aerodynamics. Their
study also indicated the reduction of flutter boundary of thewingwith
increased structural flexibility.
Aerodynamic characteristics and the potential performance

enhancement of deformable airfoils have been studied in the
literature (e.g., [8–11]). These studies usually considered the impact
of the airfoil’s flexibility on the aerodynamic loads on the airfoil
segment. Computational fluid dynamics (CFD) tools were applied to
study the wing camber effects (e.g., Swanson and Isaac [12]), where
the detailed flow condition around the cambered airfoil was captured.
However, these CFD solutions may be very computationally
expensive. Another solution with medium fidelity is to employ panel
methods to solve the unsteady aerodynamics of camberedwings. The
unsteady vortex-lattice method (e.g., [13,14]) can be easily adopted
to consider the wing camber change. This is particularly feasible in
the analysis of membrane wings [13], where the airfoil camber shape
significantly impacts the aerodynamic loads generated on the wing
and thus the aeroelastic behavior. The panel method has the
advantage in that it naturallymodels the aerodynamic loads due to the
airfoil/wing camber change. However, a shell-based structural model
that can naturally consider the camber deformation is needed in
further aeroelastic studies to fully take advantage of the panel
method,which in turnmay increase the dimension of the problem.On
the other hand, two-dimensional (2-D) aerodynamic models are also
viable for the purpose of quantifying the aerodynamic loads of
flexible airfoils, provided that they properly consider the camber
deformation of the airfoils. By using the strip theory, aerodynamic
loads on a complete slender wing can be efficiently estimated, which
may be further applied to study its aeroelastic characteristics (e.g.,
divergence, flutter, and transient response) with camberwise degrees
of freedom.
Furthermore, aeroelastic characteristics airfoils and wings with

camberwise flexibility are also of importance to study. The camber
effects on thewing aeroelastic behavior lie in two aspects. Formodels
with a fixed wing box, whereas the leading or trailing edge of the
wing is flexible andmorphing, such as theMACW [2], thewing with
VCCTEF [6], and the variable camber compliant wing designed in
AFRL [15,16], the aforementioned aerodynamic impact is dominant,
whereas the wing structural dynamic characteristic remains almost
unchanged. Therefore, the aeroelastic behavior of the wing can be
accurately captured as long as the camber effect is properly modeled
in the aerodynamics. However, for more complicated wings, such as
membrane wings or actively actuated wings, the camber effect also
significantly impacts their structural dynamic behavior. In these

cases, the structural model should be properly chosen to be coupled
with the aerodynamics. Obviously, the second problem involves
richer aeroelastic phenomena. Seber and Sakarya [17] performed
nonlinear modeling and static aeroelastic analysis of an adaptive
camber wing. However, their study did not cover dynamic responses
of the wing. Murua et al. [18] studied the dynamic aeroelasticity of a
compliant airfoil, with a focus on the flutter analysis. Cook and Smith
[19] instead used the CFD (FUN3D) approach in the aeroelastic
analysis of a flexible airfoil. In these studies, the camber deformation
of the flexible airfoil was both modeled as an assumed symmetric
parabolic bending profile [20]. However, the actual camber
deformation of a morphing wing (such as the wings studied in [6,7])
may be complicated. An assumed symmetric bending profilemay not
be enough to represent the actual camber shape and the resulting
aerodynamic loads on the airfoil. Kumar and Cesnik [21] improved
the approximation of airfoil camber deformation by applying both
parabolic and cubic functions. A dynamic stall model was used to
evaluate and optimize the aeroelastic performance of cambered
helicopter blades. For more accurate analysis, an aeroelastic
formulation that allows for arbitrary wing camber deformations is
still necessary.
To this end, an aeroelastic formulation will be developed for

flexible airfoils with the capability ofmodeling their arbitrary camber

deformations. Such camber deformations will be included in both the

structural and aerodynamic equations. Specifically, the Legendre

polynomials [22,23], a set of complete and orthogonal functions

defined along the chord, will be used to represent the airfoil camber

deformation. This is essentially a Ritz approximation of the camber

deformation. The structural dynamic equations of flexible airfoils

with both rigid-body motions and camber deformations will be

coupled with the unsteady finite-state inflow aerodynamics [24],

where a Glauert expansion will be used to account for the airfoil

deformation in the calculation of aerodynamic loads. The aeroelastic

equations will be transformed into the state-space form to facilitate

the stability analysis. Finally, numerical studies of this paper will

demonstrate the applicability of the aeroelastic formulation in static

and dynamic aeroelastic analyses of flexible airfoils.

II. Theoretical Formulation

In this section, the aeroelastic equations of motion for flexible

airfoils are derived by following Hamilton’s principle. The unsteady

finite-state inflow aerodynamic formulation considering arbitrary

airfoil deformations is coupledwith the structural dynamic equations.

Specially, the Legendre polynomials are introduced to represent the

airfoil’s arbitrary camberwise deformation that is integrated with the

classic rigid-body plunging and pitching motions of the airfoil.

Details of the theoretical formulation are provided as follows.

A. Flexible Airfoils with Arbitrary Camber Deformation

As shown in Fig. 1, the camber deformation h (positive

displacement down) is considered for a flexible airfoil, in addition to

the plunging ξ (positive down) and pitching α (positive nose up)

motions that a rigid airfoil also has. The airfoil’s displacement due to

the rigid-bodymotions and arbitrary camber deformation iswritten in

terms of a set of trial functions, given as

ξ�t� � xα�t� � h�x; t�
� P0�x�η0�t� � P1�x�η1�t� � P2�x�η2�t� � P3�x�η3�t�
� P4�x�η4�t�� · · · (1)

where ηi are the magnitudes of the associated trial functions Pi. The

Legendre polynomials, a set of complete and orthogonal polynomials

defined in the domain of [−b, b], are used in the current study to

represent the airfoil’s rigid-body motions and camber deformation.

They are defined by
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P0�x� � 1; P1�x� �
x

b
;

Pj�1�x� �
�2j� 1��x∕b�Pj�x� − jPj−1�x�

j� 1
; j � 1; 2; 3; : : :

(2)

with Fig. 2 illustrating the first six Legendre polynomials. In fact, any

arbitrary function defined on [−b, b] can be represented as a

combination of the Legendre polynomials given in Eq. (2). When

comparing both sides of Eq. (1), one can find polynomialsP0 and P1

represent the airfoil’s rigid-body plunging and pitching motions (see

Fig. 2), respectively, where their magnitudes are

η0�t� � ξ�t�; η1�t� � bα�t� (3)

Therefore, P0 and P1 are actually not necessary for modeling pure

elastic camber deformations of a flexible airfoil. This leads to

h�x; t� � P2�x�η2�t� � P3�x�η3�t� � P4�x�η4�t�� · · ·

�
X∞
i�2

Pi�x�ηi�t� � fP�x�gfη�t�g (4)

It is of interest to point out that Palacios and Cesnik [20] and Murua

et al. [18] used one assumed finite-section mode to approximate the

camber deformation of a flexible airfoil, which was given as

Ψ�x� �
�
x

b

�
2

−
1

3
(5)

It differs from polynomialP2 only by a coefficient of 3∕2. Therefore,
P2 can also be considered a finite-section mode of the airfoil.

However, the formulation to be developed herein enables one to

model any camber deformations of flexible airfoils by includingmore

Legendre polynomials.
Note that ηi are usually solved from the equations of motion of the

flexible airfoil. However, for inverse problems where the camber

deformation of the airfoil is known, the magnitudes of Legendre

polynomials can be determined by the following integral:

ηi�t� �
2i� 1

2b

Z
b

−b
h�x; t�Pi�x� dx (6)

B. Structural Dynamic Equations of Flexible Airfoils

A flexible airfoil is considered as a nonuniform beam in bending

when its equations of motion are developed. The rigid-body motions

are measured at the point where the linear and torsional springs are

attached (see Fig. 1). The kinetic energy T , potential energy U, and
external workW of a flexible airfoil are

T �t� �
Z

b

−b

1

2
m̂�x�

�
_ξ�t� � �x − d� _α�t� � _h�x; t�

�
2

dx

U�t� � 1

2
Kξ

�
ξ�t� � h�d; t�

�
2 � 1

2
Kα

�
α�t� − α0

�
2

�
Z

b

−b

1

2
EI�x��h 0 0�x; t��2 dx

W�t� �
Z

b

−b
−Δp�x; t��ξ�t� � �x − d�α�t� � h�x; t�� dx

�
Z

b

−b
m̂�x�g�ξ�t� � �x − d�α�t� � h�x; t�� dx (7)

where d is the distance of the midchord in front of the elastic axis

(e.a.) (where the two springs are attached to the airfoil), m̂ is the

mass of the airfoil per unit chordwise length, Kξ is the linear spring

constant per unit wingspan, Kα is the torsional spring constant per

unit wingspan, EI is the chordwise bending rigidity of the airfoil,

Δp is the aerodynamic pressure difference between the bottom and

top surfaces of the airfoil, and α0 is the pitching angle when the

torsional spring is not stretched. The overdot denotes the time

derivative, whereas the double prime denotes the second spatial

partial derivative of the corresponding variable. The following

quantities are defined to simplify the notations:

m �
Z

b

−b
m̂�x� dx; Sα �

Z
b

−b
m̂�x��x − d� dx;

Iα �
Z

b

−b
m̂�x�

�
x − d

�
2

dx

(8)

where m, Sα, and Iα are the total mass, structural imbalance, and

mass moment of inertia of the airfoil in pitching, respectively. The

aerodynamic lift L (positive up) and momentM (positive nose up)

acting on the airfoil are calculated by the integrals of the pressure

difference across the airfoil surfaces:

L�t� �
Z

b

−b
Δp�x; t� dx; M�t� � −

Z
b

−b
Δp�x; t��x − d� dx (9)

Because no lead–lag motion of the airfoil is involved, aerodynamic

drag is not considered in the formulation.
By following Hamilton’s principle, the equations of motion of

flexible airfoils are derived as

Fig. 1 Rigid-body motions and arbitrary camber deformation of a
flexible airfoil.

Fig. 2 First six Legendre polynomials with x coordination normalized

by b.

SU 2795

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

L
A

B
A

M
A

 o
n 

A
ug

us
t 9

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
56

65
 



2
664
m Sα 0

Sα Iα 0

0 0 Iη

3
775
8>><
>>:

�ξ�t�
�α�t�
�η�t�

9>>=
>>;

�

2
6664

Kξ 0 Kξη

0 Kα 0

KT
ξη 0 Kη �Kη

3
775
8>><
>>:
ξ�t�
α�t�
η�t�

9>>=
>>;

�

8>><
>>:

−L�t� �mg

M�t� � Sαg� Kαα0

N �t� �Hg

9>>=
>>;

(10)

where

�Iη� �
Z

b

−b
fP�x�gTm̂�x�fP�x�g dx

�Kη� �
Z

b

−b
fP 0 0�x�gTEI�x�fP 0 0�x�g dx

fKξηg � KξfP�d�g
�Kη� � fP�d�gTKξfP�d�g

fN �t�g �
Z

b

−b
−fP�x�gTΔp�x; t� dx

fHg �
Z

b

−b
fP�x�gTm̂�x� dx (11)

Note that the coupling between the rigid-body motions and the
camber deformation is neglected when the variation of the kinetic
energy is calculated. Otherwise, the inertial matrix in Eq. (10) is fully
populated. In addition, the dimension of camber degrees of freedom η
is infinitive, and so are those of camber inertia Iη, stiffness
components Kξη, Kη, and Kη, and loads N and Hg. However, one
may approximate the camber deformation by truncating the series of
Legendre polynomials. For simplicity, those quantities varying in
time will not be explicitly written as time functions in the following
derivation.

C. Unsteady Aerodynamics

Unsteady aerodynamic loads in this study are derived based on the
2-D finite-state formulation for thin airfoils presented in Peters and
Johnson [24]. AGlauert expansion is performed on the potential flow
equations. The generalized aerodynamic loads on an airfoil are
obtained through the Glauert expansion of the aerodynamic pressure
difference

Ln � −
Z

b

−b
Δp�x�Tn�x� dx (12)

where Tn�x� are the Chebyshev polynomials of the first kind. The
matrix form of Eq. (12) is given as [24]

fLng
2πρ

� −b2�M�f �hn � _vng − bu0�C�f _hn � vn − λ0g − u20�K�fhng

− b�G�f _u0hn − u0vn � u0λ0g (13)

where

fvng �

8>>>>><
>>>>>:

v0

v1

0

..

.

9>>>>>=
>>>>>;

�

8>>>>><
>>>>>:

U0α� _ξ − d_α

b_α

0

..

.

9>>>>>=
>>>>>;
;

f _vng �

8>>>>><
>>>>>:

_v0

_v1

0

..

.

9>>>>>=
>>>>>;

�

8>>>>><
>>>>>:

U0 _α� �ξ − d�α

b�α

0

..

.

9>>>>>=
>>>>>;
; fλ0g �

8>>>>><
>>>>>:

λ0

0

0

..

.

9>>>>>=
>>>>>;
;

u0 � U0 (14)

The aerodynamic matrices [M], [C], [K], and [G] are all defined in

Peters and Johnson [24]. The inflowparameter λ0 accounts for induced
flow due to the free vorticity, which is the weighted summation of the

inflow states λ as described in Peters and Johnson [24]:

λ0 �
1

2

XN
j�1

�bjλj (15)

where N is the number of inflow states defined on the airfoil. The

inflow states are governed by

�E�f_λg � U0

b
fλg � fcg

�
U0 _α� �ξ�

�
1

2
b − d

�
�α

�
(16)

where the coefficients �b, E, and c are all defined in Peters et al. [25].
In Eq. (13), hn are theGlauert expansion coefficients of the camber

deformation h�x� [24], such that

h�x� �
X∞
n�0

Tn�x�hn � T0�x�h0 � T�x�1h1 � T2�x�h2� · · ·

(17)

However, h�x� has already been represented by the Legendre

polynomials in the structural dynamic modeling, as shown in Eq. (4).

Therefore, to obtain the Glauert expansion coefficients of h�x�, one
only needs to find the Glauert expansion of the Legendre

polynomials, that is,

h�x� �
X∞
i�2

Pi�x�ηi �
X∞
i�2

�X∞
n�0

Tn�x�sni
�
ηi

�
X∞
n�0

�
Tn�x�

�X∞
i�2

sniηi

��
(18)

where each Legendre polynomial is expanded and sni are the Glauert
expansion coefficients of the ith Legendre polynomial. From

Eqs. (17) and (18), it is simple to have

hn �
X∞
i�2

sniηi (19)

where [s] has infinitive dimensions. Its first few entries are given by

�s� �

2
66666666666666664

1∕4 0 9∕64 0 250∕2560 0

0 3∕8 0 30∕128 0 . .
.

3∕4 0 20∕64 0 525∕2560 0

0 5∕8 0 35∕128 0 . .
.

0 0 35∕64 0 630∕2560 0

0 0 0 63∕128 0 . .
.

0 0 0 0 1155∕2560 0

0 0 0 0 0 . .
.

3
77777777777777775

(20)

Substituting Eq. (19) into Eq. (13) yields the generalized

aerodynamic loads written in terms of the magnitudes of the

Legendre polynomials η:

fLng
2πρ

� −b2�M�
8<
:
X∞
i�2

sni �ηi � _vn

9=
; − bu0�C�

8<
:
X∞
i�2

sni _ηi � vn − λ0

9=
;

− u20�K�
8<
:
X∞
i�2

sniηi

9=
; − b�G�

8<
: _u0

X∞
i�2

sniηi − u0vn � u0λ0

9=
; (21)
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Therefore, the individual generalized aerodynamic loadsLn can be
obtained fromEq. (21) based on the input of airfoil motions (ξ, α, and
η) and their time derivatives. Ln are then used to calculate the
resultant aerodynamic loads on the airfoil. Actually, the first two
integrals of Eq. (12) result in the aerodynamic lift and moment on the
airfoil

L �
Z

b

−b
Δp�x� dx �

Z
b

−b
Δp�x�T0�x� dx � −L0

M � −
Z

b

−b
Δp�x��x − d� dx

� d

Z
b

−b
Δp�x�T0�x� dx − b

Z
b

−b
Δp�x�T1�x� dx

� −dL0 � bL1 (22)

The camber loads N are obtained from the integrations of the
pressure difference Δp weighted by the Legendre polynomials, as
shown inEq. (11). They are further related to theGlauert expansion of
Δp (i.e., the integrations of Δp weighted by the Chebyshev
polynomials). The first few entries of N are given by

fN g �

8>>>>>>>><
>>>>>>>>:

1
4
L0 � 3

4
L2

3
8
L1 � 5

8
L3

9
64
L0 � 20

64
L2 � 35

64
L4

30
128

L1 � 35
128

L3 � 63
128

L5

..

.

9>>>>>>>>=
>>>>>>>>;

� �s�TfLng (23)

To summarize, Eqs. (22) and (23) give the complete set of
aerodynamic loads on a flexible airfoil. It is clear from Eq. (12) that
the potential flow-based aerodynamics does not consider friction
drag due to the viscous effects, unless some ad hoc corrections
(e.g., by using XFoil’s calculation) are applied.

D. Aeroelastic Equations and Flutter Boundary of Flexible Airfoil

Equations (10) and (16) complete the aeroelastic governing
equations of a flexible airfoil, which are

2
664
m Sα 0

Sα Iα 0

0 0 Iη

3
775
8>><
>>:

�ξ

�α

�η

9>>=
>>;
�

2
664

Kξ 0 Kξη

0 Kα 0

KT
ξη 0 Kη �Kη

3
775
8>><
>>:
ξ

α

η

9>>=
>>;

�

8>><
>>:

−L�mg

M� Sαg� Kαα0

N �Hg

9>>=
>>;

�E�f_λg � �F1�fλg � �F2�

8>>><
>>>:

�ξ

�α

�η

9>>>=
>>>;

� �F3�

8>><
>>:

_ξ

_α

_η

9>>=
>>;

(24)

where

�F1� � −
U0

b
�I�; �F2� �

�
fcg

�
1
2
b − d

�
fcg �0�

�
;

�F3� �
h
f0g U0fcg �0�

i
(25)

Obviously, it is assumed that the inflow states are independent of the
camber deformations. The transient aeroelastic analysis of the
flexible airfoil can be performed by using numerical integration of
Eq. (24). To perform the flutter analysis, one needs to expand the
aerodynamic loads on the right-hand side of Eq. (24) with respect to

the independent variables (ξ, α, η, and λ) and group with the terms on
the left-hand side, yielding

� ~M�
8<
:

�ξ
�α
�η

9=
;� � ~C�

8<
:

_ξ
_α
_η

9=
;� � ~K�

8<
:
ξ
α
η

9=
; � �D�fλg � fF0g (26)

where the aeroelastic inertial, damping, and stiffness matrices are

� ~M� �

2
64
m Sα 0

Sα Iα 0

0 0 Iη

3
75 −

2
64
−L�ξ −L �α −L�η

M�ξ M�α M�η

N �ξ N �α N �η

3
75;

� ~C� � −

2
64
−L_ξ −L _α −L_η

M_ξ M _α M_η

N _ξ N _α N _η

3
75;

� ~K� �

2
64

Kξ 0 Kξη

0 Kα 0

KT
ξη 0 Kη �Kη

3
75 −

2
64
−Lξ −Lα −Lη

Mξ Mα Mη

N ξ N α N η

3
75;

�D� �

2
64
−Lλ

Mλ

N λ

3
75; fF0g �

8>><
>>:

mg

Sαg� Kαα0

Hg

9>>=
>>;

(27)

In the preceding equations, L,M, andN with individual subscripts
ξ, α, η, and λmeans the partial derivatives of the loads with respect to
the corresponding variables. The calculation of these partial
derivatives is straightforward, because the aerodynamic loads have
been derived as the explicit functions of the airfoil’s rigid-body
motions and camber degrees of freedom, as well as their time
derivatives. Equation (26) can be further written into the state-space
form as

2
4 I 0 0

0 ~M 0

0 F2 E

3
5f _xg �

2
4 0 I 0

− ~K − ~C D
0 F3 F1

3
5fxg �

8<
:

0

F0

0

9=
; (28)

where

fxgT � f ξ α ηT _ξ _α _ηT λT g (29)

The homogenous part of Eq. (28) is further simplified as

_x � Ax; A �

2
64
I 0 0

0 ~M 0

0 F2 E

3
75

−12
64

0 I 0

− ~K − ~C D
0 F3 F1

3
75 (30)

Finally, the flutter boundary of the airfoil is searched by evaluating
the eigenvalues of the system matrix A within a range of freestream
velocities. The unstable speed is identified when the real part of an
eigenvalue turns to positive [26]. It is clear that the gravitational loads
mg, Sαg, and Hg and the constant pitching angle α0 have no impact
on the flutter instability, because they do not participate in the A
matrix. However, the relative position between c.g. and e.a. (Sα∕mb)
may affect the airfoil’s flutter characteristic. More details will be
discussed in the next section.

III. Numerical Studies

Several numerical results are presented in this section. First, the
Legendre polynomials are used to approximate the camber line of a
family of NACA four-digit airfoils with the same camber shape but
different thicknesses. The resulting camber line geometry is fed into
the developed aerodynamic equation to evaluate the aerodynamic
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loads of a cambered airfoil. Additionally, more discussions are

focused on the static and dynamic characteristics of a flexible airfoil.

Especially, the impact of the airfoil’s camberwise rigidity and inertia

on the aeroelastic system’s divergence and flutter boundary are

explored.

A. Approximation of Camber Line Geometry and Aerodynamic Load

of Cambered Airfoils

By definition, the camber line of a NACA four-digit airfoil is

described by

yc �
8<
:

mc

p2
c
�2pcxc − x2c� 0 ≤ xc ≤ pc
mc

�1−pc�2 �1–2pc � 2pcxc − x2c� pc ≤ xc ≤ 1
(31)

where xc is the chordwise coordinate ranging from zero to one, which

can be transferred to the range of [−1, 1]. As an example, a family of

NACA 44xx (“xx” denotes the maximum airfoil thickness) airfoils

are used, where mc � 0.04 and pc � 0.4. A thin, flat airfoil is then

bent to have the same camber shape as the NACA 44xx airfoils. Its

aerodynamic loads with such a camber can be calculated using the

formulation derived in the current study. Obviously, the series of the

Legendre polynomials needs to be truncated when the camber line is

approximated, where themagnitudes of the polynomials are found by

using Eq. (6). In this case, polynomialsP0 andP1 should be included

to match the coordinates of the leading- (l.e.) and trailing-edges (t.e.)

of the NACA 44xx airfoils. Figure 3a shows how the camber line of

the NACA 44xx airfoils is approximated by the Legendre

polynomials, whereas Fig. 3b compares the accuracy of these

approximated camber lines using the piecewise relative errors. The

polynomials starting from P2 are called “flexible terms.” It can be

seen that 2–4 flexible terms are sufficient for the purpose of

approximating the shape of the airfoil’s camber line, resulting in

piecewise errors less than 4% of the maximum camber. The modal

assurance criterion (MAC) number and rms error of the approximated

camber shapes compared with the exact camber line of NACA 44xx

airfoils are listed in Table 1.
The aerodynamic lift and moment of the cambered thin airfoil is

calculated by using Eqs. (21) and (22), with a variable pitching angle

α on top of the camber shape. The aerodynamic lift and moment
coefficients are

α0 � η1
b
� 3η2

2b
� 9η3

4b
� 45η4

16b
� 225η5

64b
� 945η6

512b
� · · ·

cL � 2π�α − α0�

cM � −π
�
3η2
4b

� 15η3
16b

� 45η4
32b

� 105η5
64b

� 945η6
1024b

� · · ·

�
(32)

where α0 is the equivalent zero lift angle. The lift coefficients
calculated using different numbers of flexible terms (Legendre
polynomials) are plotted in Fig. 4a, whereas the moment coefficients
are plotted in Fig. 4b. In general, the piecewise difference between the
lift coefficients predicted using one flexible term and five flexible
terms is about 0.05. Compared with the order of lift coefficient cL
around one, this difference is reasonably small. The moment
coefficient is also well converged by adding Legendre polynomials.
Moreover, the zero lift angle can also be accurately predicted, as seen
fromTable 2. In this table, the zero lift angles predicted by the current
formulation are compared with a family of NACA four-digit airfoils
with the same camber but different thicknesses. The lift coefficients
of theseNACAairfoils calculated by usingXFoil are plotted in Fig. 5,
where the slopes of the curves reduce from 7.05 (for NACA 4415) to
6.51 (for NACA 4405). Obviously, the finite airfoil thickness makes
the slopes of the lift curves deviate from 2π. The current formulation
does not take into account the airfoil thickness, which results in an
exact slope of 2π. Finally, it is important to point out that the current
aerodynamic formulation with the camber degrees of freedom does
not model the flow separation. Therefore, no stall effects are
considered in the current study.

B. Natural Modes and Frequencies of Flexible Airfoils

In this section, natural modes and frequencies of a uniform flexible
airfoil are studied. The mass and bending rigidity properties are
selected as m � 40 kg∕m and EI � 20 N ⋅m, respectively. The
natural frequencies and mode shapes of the free–free airfoil can be
obtained by solving the eigenvalue problem involving only the
camber inertia Iη and stiffness Kη, with neither the linear and
torsional springs nor additional boundary conditions. Note that one

a) Approximate camber line b) Piecewise error with respect to maximum camber

Fig. 3 Approximation of the camber line of NACA 4415 airfoil.

Table 1 MAC number and rms error of approximated camber lines

Flexible terms 1 2 3 4 5

MAC number 9.964 × 10−1 9.998 × 10−1 9.999 × 10−1 1.000 1.000
Rms error 3.506 × 10−3 9.052 × 10−4 4.791 × 10−4 3.378 × 10−4 1.637 × 10−4
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has to converge the eigenvalue solution by properly choosing

polynomials P2 and beyond, without using polynomials P0 and P1.

On the other hand, as a uniform beam with a free–free boundary

condition, the natural frequencies of the flexible airfoil may be

obtained analytically:

ωi � �2kib�2
��������������
EI

8 mb3

r
(33)

where ki should satisfy the characteristic equation of a uniform free–

free beam, such that

cos�2kib� cosh�2kib� � 1 (34)

The two types of solutions of the natural frequencies of the flexible

airfoil are compared and listed in Table 3. The mode shapes obtained

using eight flexible terms are also compared with the analytical

solution (Fig. 6). It can be seen that the approximate solution with

only one flexible term (P2) has an error of 20%. This is expected

when solving the beam natural frequency using Rayleigh’s quotient.

The accuracy of the approximate solution is improved by adding

more flexible terms, even though the higher-order modes are still not

accurately calculated. For this uniform airfoil, its mode shapes are

strictly either symmetric or antisymmetric. Therefore, adding

antisymmetric polynomials (e.g., P3, P5, etc.) does not improve the

accuracy of the symmetricmodes (e.g., mode 1,mode 3, etc.). For the

same reason, symmetric polynomials do not contribute to

antisymmetric modes either. From the observation, it is sufficient

to approximate the first two modes with relative errors of 0.85 and

3.02%, respectively, by using the first four flexible terms (P2–P5).

However, to include more polynomials, even though providing

accurate solutions of the higher-order modes, may significantly

complicate the whole aeroelastic formulation shown in Eq. (24),

especially the calculation of aerodynamic loads. Because the high-

frequency modes usually do not have significant impacts on the

overall dynamic response of the airfoil, one does not have to precisely

capture these modes.

C. Dimensionless Quantities

To facilitate the studies of static and dynamic aeroelastic

characteristics of flexible airfoils with different combinations of

properties, some variables are nondimensionalized. In static

analyses, because the linear spring does not significantly impact

the static instability of the airfoil, it is fixed as a constant, whereas the

torsional spring constant and bending rigidity of the airfoil are both

nondimensionalized using ratios against the linear spring constant.

This allows for the variations of the rigidity properties of both the

torsional spring and the airfoil. Above all, uniform thin, flat airfoils

are studied with the location of the elastic axis represented as the

dimensionless variable a. The airfoil is placed in a freestream, where

the dynamic pressure is also scaled by the linear spring constant, such

that q � r3Kξ, while r3 varies from zero until it reaches the critical

divergence dynamic pressure. Additional dimensionless quantities in

static analyses are listed inTable 4. In dynamic analyses, however, the

current work follows the same convention in Bisplinghoff et al. [27]

a) Lift coefficient b) Moment coefficient about quarter chord
Fig. 4 Lift and moment coefficients of deformed flat airfoil.

Fig. 5 Lift coefficients of airfoils with same camber but different
thicknesses.

Table 2 Zero lift angles of deformed flat and NACA airfoils

Deformed flat airfoil NACA 4415 NACA 4410 NACA 4405

Flexible terms 1 2 3 4 5 — — — — — —

Zero lift angle, deg −4.90 −3.75 −4.12 −4.35 −4.23 −4.22 −4.21 −4.18
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and Murua et al. [18], such that the nominal plunging–pitching

frequency ratio ωξ∕ωα and the nominal bending–pitching frequency

ratioωη∕ωα are used, as listed inTable 5.Note that the frequency ratio

ωη∕ωα is calculated by using analytical solution of the airfoil’s first

free bending frequency [see Eq. (33)]. In all cases, the pitching angle

of the airfoil when the torsional spring is not stretched is set

to α0 � 2 deg.

D. Static Aeroelastic Behavior of Flexible Airfoils

In the static analysis, the two springs are attached at the midchord

of the airfoil (e.g., a � 0), such that the gravitational force does not

impact the pitching of the airfoil. To begin with, a stronger flexible

airfoil is studied with the nondimensional rigidities being r1 � 1 and
r2 � 15. From the previous studies, it has been learned that four

flexible terms of the Legendre polynomials are suitable for most

cases, capturing the first two bending modes of the airfoil and

yielding sufficiently accurate aerodynamic load prediction with the

camber. In the following studies, up to four Legendre polynomials are

used to model the flexible deformation of the airfoil and the

associated aerodynamic loads. The corresponding aerodynamic

equations are listed in the Appendix. The resulting pitching angle α
and the magnitude η2 of polynomialP2 are plotted in Fig. 7a with the

change of the dynamic pressure. The same process is then repeated

for a softer airfoil (r1 � 1 and r2 � 1.5) and the resulting α and η2 are
plotted in Fig. 7b. From the comparison of the two plots, it is evident

that the flexibility of the airfoil does bring down the divergence

dynamic pressure (from above 0.6 to less than 0.5). The stronger

airfoil tends to gradually approach the critical pressure, as can be seen

from Fig. 7a, no matter how many flexible terms are involved in the

solution. Basically, the airfoil’s camberwise flexibility does not

significantly impact its static aeroelastic behavior. However, the

softer airfoil may exhibit a sudden divergence, as can be observed

from the solutions with 2–4 flexible terms in Fig. 7b. In these cases,

the aeroelastic system loses both the torsional rigidity and the

bending rigidity of the airfoil, resulting in diverging solutions of both

the pitching angle and the camber deformation. If only one flexible

term is involved in the solution of the softer airfoil, the sudden

torsional divergence is not observed. Instead, only the airfoil itself

loses the bending rigidity and is folded together due to the

aerodynamic force on it, whereas the pitching angle is still less than

10 deg. The solution simply stops without further increase of the

dynamic pressure.

To further explore the impact of the airfoil flexibility on its static

aeroelastic behavior, the dimensionless dynamic pressure r3 is fixed
at 0.4, whereas the airfoil bending rigidity is allowed to vary from 1.5

to 15. A sequence of static aeroelastic solutions are performed to

identify the airfoil’s static aeroelastic behaviorwith different levels of

flexibility. A first check is performed by plotting the airfoil’s pitching

angle (Fig. 8a). It is of interest to see that adding the first flexible term

P2 does not change the pitching angle at all. This behavior is actually

echoed in Fig. 7. Similarly, the third flexible term P4 also seems to

have no impact on the pitching angle. In reality, the two polynomials

also make no contributions to the aerodynamic moment (Fig. 8b).

Fig. 6 Free–free mode shapes of flexible airfoil (all dotted lines with symbols represent approximated modes).

Table 3 Solutions of natural frequencies of the flexible airfoila

Mode

Solution 1 2 3 4 5 6

1 flex term 18.9736 — — — — — — — — — —

2 flex terms 18.9736 64.8066 — — — — — — — —

3 flex terms 15.9553 64.8066 157.937 — — — — — —

4 flex terms 15.9553 44.9275 157.937 322.197 — — — —

5 flex terms 15.8204 44.9275 91.3704 322.197 586.636 — —

6 flex terms 15.8204 43.6200 91.3704 159.096 586.636 985.108
7 flex terms 15.8203 43.6200 85.6344 159.096 253.653 985.108
8 flex terms 15.8203 43.6091 85.6344 142.170 253.653 381.903
Analytical 15.8203 43.6093 85.4916 141.322 211.111 294.857

aMeasurements are given in units of radians per second.

Table 4 Dimensionless quantities in static aeroelastic
analysis

Quantity Variable Dimensionless variable

Linear spring constant Kξ — —

Torsional spring constant Kα r1 � Kα∕�4b2Kξ�
Airfoil bending rigidity EI r2 � EI∕��1∕18�b3Kξ�
Dynamic pressure q r3 � q∕Kξ
Location of elastic axis d a � d∕b
Plunging motion ξ ξ∕b
Camber degrees of freedom ηi ηi∕b

Table 5 Dimensionless quantities in dynamic aeroelastic analysis

Quantity Variable Dimensionless variable

Mass m m∕πρb2
Structural imbalance Sα xα � Sα∕mb
Pitching moment of
inertia

Iα rα �
����������������
Iα∕mb2

p

Torsional spring
constant

Kα — —

Linear spring
constant

Kξ ωξ∕ωα � �������������
Kξ∕m

p
∕

�������������
Kα∕Iα

p

Airfoil bending
rigidity

EI ωη∕ωα � 4.732
���������������������������
�EI�∕�8mb3�

p
∕

�������������
Kα∕Iα

p

Freestream velocity U0 U0∕ωαb
Time t ωαt∕2π
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This is simply because the elastic axis is placed at the midchord. A
zero value of a (thus, d) cancels the contributions of both η2 and η4 in
Eq. (A3) in the Appendix. However, these magnitudes of
polynomials still impact the solution of lift and thus the plunging
motion (Fig. 9). If one further looks at themagnitudes of theLegendre
polynomials, especially in the solution that involves the first four
flexible terms (Fig. 10), it can be identified that the first polynomial is
always the most significant when compared with the rest. However,
with the reduction of the airfoil bending rigidity, the contributions of
higher-order polynomials increase. Nonetheless, the dominant
negative η2 means the airfoil is mainly bent up, as seen from Fig. 11.
The negative camber creates a negative equivalent angle of attack
[Eq. (A8)] and thus the negative lift. When the airfoil is soft enough,
this negative contribution may outperform the positive aerodynamic
lift generated from the positive pitching angle. That is why the lift
coefficient of the airfoil turns to be negative when the rigidity of
the airfoil is below three (Fig. 9b). Note that the large bending
deformation of the soft airfoils (e.g., r2 � 1.5) in Fig. 11 may break
the assumption of linear structural behavior in this study. However,
the current development is still good for qualitative analysis of such
airfoils. Regarding the impact of airfoil flexibility on its static
aeroelastic behavior, it can be seen that an approximate solution using
only one cambermode is not always accurate enough. A convergence
study is needed to ensure the truncated modes (polynomials) are
actually negligible for a given airfoil.

One more study is performed by moving the elastic axis to the

quarter chord point from the leading edge (a � −0.5). The airfoil

should be always statically stable and no divergence speed can be

found if it is rigid. However, the camberwise flexibility of the airfoil

may change this property. Figure 12 demonstrates the variation of the

divergence dynamic pressure with the airfoil rigidity, where four

solutions are carried out by using different numbers of Legendre

polynomials. Obviously, the solution with only one polynomial can

still capture the trend. However, one has to use at least three

polynomials to reach enough accuracy.

E. Flutter of Flexible Airfoils

The flutter speed of a rigid, thin plate airfoil with no camber

flexibility is first calculated using the approach described in Sec. III.

D, with no added structural damping in this calculation. As a

validation of the flutter analysis approach, the current results are

comparedwith those presented in [18,28,29]. The airfoil’s elastic axis

is located at a � −0.3, with a density ratio m∕πρb2 � 20 and

dimensionless radius of gyration r2α � 0.25. The nominal plunging–

pitching frequency ratio ωξ∕ωα varies from zero to two. The flutter

boundary is also impacted by the location of the airfoil’s c.g. xα
measured from its elastic axis. Figure 13 plots the dimensionless

flutter speed with four different c.g. locations. Zeiler [29] identified

that several results presented by Theodorsen and Garrick [28] were

a) Stronger airfoil r2 = 1.5 b) Softer airfoil r2 = 1.5

Fig. 7 Pitching angles of two airfoils from solutions involving different numbers of flexible terms.

a) Pitching angle b) Aerodynamic moment coefficient
Fig. 8 Pitching angle and aerodynamic moment coefficient of the airfoil with different levels of flexibility.
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a) Plunging (positive down) b) Aerodynamic lift coefficient
Fig. 9 Plunging and aerodynamic lift coefficient of the airfoil with different levels of flexibility.

Fig. 10 Normalized (about b) magnitudes of Legendre polynomials in
the solution using four flexible terms.

Fig. 11 Airfoil camber deformations (percentage of semichord length)
with different levels of flexibility.

Fig. 12 Static aerodynamic loads of the flexible airfoil.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ωξ/ωα

0

1

2

3

4

5

6

xα = 0

xα = 0.05

xα = 0.1

xα = 0.2

Current
Theodorsen & Garrick [28]
Zeiler [29]
Murua et al. [18]

U
f /

(ω
   

b)
α

Fig. 13 Comparison of flutter speed of a rigid airfoil from different
solutions.
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not accurate. Except for missing the extremevalues aroundωξ∕ωα �
1.15 for xα � 0.1, the current results match perfectly with [18,29],
both of which used aV–gmethod for the flutter calculation. Note that

Bisplinghoff et al. [27] also did not report the deep valleys of the data
in the same frequency ratio range.
The previous case does not include the camber deformation of

the airfoil. For a better study of the impact on airfoil’s flexibility on
the flutter boundary, a uniform thin, flat airfoil is studied with the

following dimensionless properties: m∕πρb2 � 20, a � 0,
xα � 0, and r2α � 1∕3. The nominal frequency ratio ωξ∕ωα is
kept as one, whereas ωη∕ωα is allowed to vary. To eliminate
unrealistic impact from the high-frequency camber modes and to
remove the impact of some neutrally stable root loci, a stiffness-
proportional damping with a damping coefficient of 0.001 is
added to the equation of motion. Four Legendre polynomials
(P2–P5) are included in the flutter calculations. The obtained

a) Flutter speed b) Flutter frequency

Fig. 14 Flutter speed of the flexible airfoil.

a) ω /ω = 2η α b) ω /ω = 1η α c) ω /ω = 0.5η α

Fig. 15 Vector diagram of unstable modes, normalized by the magnitude of the first camber degree of freedom.

a) Plunging b) Pitching
Fig. 16 Rigid-body motions of postflutter case (U0 � 1.1Uf , ωη∕ωα � 1, and ωξ∕ωα � 1).

SU 2803

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

L
A

B
A

M
A

 o
n 

A
ug

us
t 9

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
56

65
 



a) First camber dof:   2 b) Second camber dof:   3ηη
Fig. 17 First two camber degrees of freedom of postflutter case (U0 � 1.1Uf , ωη∕ωα � 1, and ωξ∕ωα � 1).

a) Plunging b) Pitching
Fig. 18 Rigid-body motions of preflutter case (U0 � 0.9Uf , ωη∕ωα � 1, and ωξ∕ωα � 1).

a) First camber dof:    2η b) Second camber dof:   3η
Fig. 19 First two camber degrees of freedom of preflutter case (U0 � 0.9Uf , ωη∕ωα � 1, and ωξ∕ωα � 1).
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flutter speeds with the change of ωη∕ωα are then plotted in
Fig. 14a. When the airfoil bending rigidity is higher than 0.6, the
flutter is dominated by the first camber degree of freedom (DOF),
as can be observed from the diagram of the unstable mode
(Fig. 15a), even though the coupling with the plunging degree may
change (Fig. 15b) when the airfoil flexibility varies. Nonetheless,
the change of mode shape is gradual and results in a smooth
deduction of the flutter speed. However, if the airfoil gets more
flexible, the driving component of instability shifts from the first to
the second camber degree of freedom (Fig. 15c). The shift of mode
shape also causes the flutter speed and frequency changes (Fig. 14)
whenωη∕ωα is between 0.5 and 0.6. It is also of interest to note that
Murua et al. [18] also analyzed the flutter characteristics of the
same airfoil. However, only one camber mode was included in
their study and the airfoil’s camber rigidity was obtained from a
different approach. In addition, the structural damping is treated
differently in the two studies. These have caused some
disagreement between the current results and those from [18].
As a verification of the current flutter analysis results, a transient

simulation is carried out with a freestream velocity of 1.1 times Uf,
where the nominal frequency ratio ωη∕ωα is fixed at 1.0. Figures 16
and 17 clearly show the instability of the rigid-body and flexible
degrees of the aeroelastic system, which is otherwise stable if the
freestream velocity is 0.9 times Uf (see Figs. 18 and 19).

IV. Conclusions

This paper aimed at providing an efficient solution to aeroelastic
problems of flexible airfoils that were allowed to have arbitrary
camber deformations in addition to rigid-body plunging and pitching
motions. The orthogonal Legendre polynomials, defined along the
airfoil chordwise length, were applied to represent arbitrary camber
deformations of flexible airfoils. The solution’s accuracy can be
guaranteed by involving sufficient Legendre polynomials in the
solution. With the arbitrary camber deformations represented by the
combination of Legendre polynomials, the structural dynamic
governing equations of flexible airfoils were derived by following
Hamilton’s principle. The unsteady aerodynamic loads, including the
lift, moment, and associated camber loads, were obtained by
extending the finite-state inflow theory, where the airfoil camber
deformations that had been represented by the Legendre polynomials
were further expanded using the Glauert expansion. The modified
aerodynamic formulation may provide the required aerodynamic
loads of thin airfoils with arbitrary rigid-body motions and camber
deformations. The resulting aeroelastic system still remains of low
order, where the series of Legendre polynomials can be truncated for
approximate solutions, which is in nature more efficient than CFD or
other panel methods.
The developed formulation was then tested in different aspects.

First, the analytical camber line of a standard cambered NACA four-
digit airfoil was approximated by using the expansion of the
Legendre polynomials. As expected, by selecting a sufficient number
of Legendre polynomials, the airfoil camber was very accurately
represented by these polynomials. The static aerodynamic loads on
the approximated airfoil were also comparedwith the loads ofNACA
four-digit airfoils calculated using XFoil. It was verified that the
current aerodynamic formulation could perfectly model the loads on
thin airfoils, yet further corrections (e.g., using the conformal
mapping of the airfoil contour) would be required to model airfoils
with finite thickness. In addition, the current aerodynamic
formulation only considered inviscid and incompressible flow. No
stall effects were considered in the formulation.
Finally, the static and dynamic aeroelastic characteristics of a

flexible airfoil were explored. The camber flexibility did bring down
the critical divergence pressure. It is well known that an airfoil should
not diverge if its elastic axis is located at or in front of the aerodynamic
center. However, this will break if the camberwise flexibility is
considered. The torsional divergence was obviously observed if the
airfoil turned to be flexible. In addition, the flutter boundary of the
airfoil was also significantly reduced if the airfoil’s flexibility was
considered in the modeling. Especially, the dominant unstable degree

shifted between the first two camber degrees of freedom, if the
flexibility of the airfoil varied. After all, from this study, it can be
concluded that wing camberwise flexibility should be properly
considered in designs and studies of morphing wings or membrane
wings, where either the structural or aerodynamic camber shape can
change in the operation. The newly introduced camberwise flexibility
may significantly alter the aeroelastic behavior of the system.

Appendix: 2-D Unsteady Aerodynamic Loads with
Legendre Polynomials P2–P5

Aerodynamic loads acting on a flexible airfoil are calculated
using four Legendre polynomials (P2–P5) to represent the airfoil’s
camber deformation. The generalized aerodynamic loads are
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where η2–η5 are the magnitudes of Legendre polynomials P2–P5,
respectively. By following Eqs. (22) and (23), all resultant
aerodynamic loads can be calculated based on the generalized
loads, for example, the aerodynamic lift, moment, and first four
camber loads are
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where the effective angle of attack is
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