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One of the earliest approaches in gain-scheduling control is the gridding based approach, in which a 
set of local linear time-invariant models are obtained at various gridded points corresponding to the 
varying parameters within the flight envelop. In order to ensure smooth and effective Linear Parameter-
Varying control, aligning all the flexible modes within each local model and maintaining small number of 
representative local models over the gridded parameter space are crucial. In addition, since the flexible 
structural models tend to have large dimensions, a tractable model reduction process is necessary. In 
this paper, the notion of σ -shifted H2- and H∞-norm are introduced and used as a metric to measure 
the model mismatch. A new modal alignment algorithm is developed which utilizes the defined metric 
for aligning all the local models over the entire gridded parameter space. Furthermore, an Adaptive 
Grid Step Size Determination algorithm is developed to minimize the number of local models required 
to represent the gridded parameter space. For model reduction, we propose to utilize the concept of 
Composite Modal Cost Analysis, through which the collective contribution of each flexible mode is 
computed and ranked. Therefore, a reduced-order model is constructed by retaining only those modes 
with significant contribution. The NASA Generic Transport Model operating at various flight speeds is 
studied for verification purpose, and the analysis and simulation results demonstrate the effectiveness of 
the proposed modeling approach.

© 2017 Elsevier Masson SAS. All rights reserved.
1. Introduction

At the advent of advanced composite materials technology, 
lightweight aircraft design concept has attracted considerable at-
tentions in recent years in an effort to improve the aerodynamic 
efficiency. However, as the flexibility of a structure increases, 
aeroelastic interactions with aircraft aerodynamic forces and mo-
ments can have adverse impact on aircraft’s stability and perfor-
mance. Therefore, active control of aeroelastic aircraft is becoming 
increasingly important, especially for aircraft with highly flexible 
wings. The objectives of flight control design are to guarantee the 
closed-loop stability and to improve the handling qualities over a 
wide range of flight conditions. Generally, these objectives cannot 
be achieved using just one single flight controller operating over 
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the entire flight envelop, due to the notable variations on rigid 
body aerodynamics and aeroelasticity within the flight profile.

One effective remedy for this challenging problem is to directly 
synthesize Linear Parameter-Varying (LPV) controller [1] for the 
entire flight envelop [2–5]. This approach has been demonstrated 
to be very promising for various aerospace applications [6–9]. Al-
though many theoretical results were developed and applied to the 
special class of nonlinear and/or parameter-varying systems, the 
essential requirement for these theories to work is to have a repre-
sentative LPV model that captures the varying nature of the system 
dynamics. In general, there are two ways to attain the needed LPV 
model. If a mathematical model is difficult to attain [10], a global 
[11] or local [12] system identification technique can be applied 
to identify the LPV model. In the global system identification ap-
proach, a single experiment has to be performed such that all 
scheduling parameters are excited simultaneously and persistently 
[13], which is not always possible in practice. On the other hand, 
local system identification approach requires performing multiple 
experiments with fixed scheduling parameters [14] at various op-
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erating points, leading to a set of local linear time-invariant (LTI) 
models that need to be interpolated to obtain the LPV model. How-
ever, the main drawback associated with local methods is the lack 
of information for the rate of change of scheduling parameter since 
these LTI models are obtained by freezing scheduling parameters at 
predefined points.

In the context of attaining aeroelastic models suitable for ro-
bust and LPV control, a number of research has been conducted 
recently, see for instance [15–18]. Some of these studies assume 
the availability of the analytical models [19–21], which is not 
practical since most of the large scale aerospace structures are 
obtained via finite element analysis method, hence they are dis-
crete in nature. In Varga et al. [22] and Puyou and Losser [23], 
high-fidelity models were considered that included both rigid and 
flexible dynamics of a civilian aircraft. However, direct interpola-
tion is not possible due to the inconsistency of their state-space 
representations at different operating points. Similar results were 
reported in Ferreres [10] and Roos [24], where empirical criteria 
and physical knowledge of the system were required to obtain the 
LPV model. Recently, the problem of modal matching and model 
reduction were considered in Theis et al. [15]. A set of criteria 
were introduced for modal alignment, based on the modal fre-
quency, damping ratio, and the “B” and “C” matrices associated 
with each mode. For model reduction, truncation, residualization, 
and balanced coordinate transformation approaches were utilized 
to reduce system order sequentially, and the ν-gap metric was 
used to measure the distance between the reduced-order models 
(ROMs) and full-order models (FOMs). These approaches were ap-
plied to study the Body Freedom Flutter (BFF) air vehicle. Similar 
approach was used in [25] for BFF aircraft structure. In [16], a pro-
cedure was developed to derive reduced-order LPV model from a 
given set of large-scale LTI models at grid points. H2-norm was 
used to measure the distance between FOMs and ROMs. However, 
the approach was formulated in the Linear Fractional Represen-
tation (LFR) framework. The tensor product model transformation 
technique was proposed in Baranyi and Takarics [17,18], in which 
the LPV state-space models were transformed into parameter vary-
ing convex combination of LTI models through high-order singular 
value decomposition process. As a result, only those LTI models 
representing polytopic vertices were needed for subsequent con-
trol design. Although modeling and control of aeroelastic aircraft 
in LPV framework have been studied extensively in the literature, 
the topic still remains as a challenging research subject and needs 
to be explored.

The main contributions of this paper are as follows. First, we 
reexamine the linear interpolation approach. It is found that when 
interpolating two aeroelastic LTI models operating at two different 
flight conditions, the resultant interpolated model can be erro-
neous, especially when performed in modal coordinates. This is 
because the sequential order of the flexible modes at two different 
operating conditions might be different, hence resulting in a model 
mismatch when interpolating the two models. Therefore, a special 
care must be taken to ensure that the flexible modes are con-
sistently ordered throughout operating conditions before perform-
ing interpolation between any two LTI models. For this purpose, 
a novel Modal Alignment Algorithm (MAA) is developed to align 
all aeroelastic modes for a given set of LTI models sampled over 
the flight envelop, so that all LTI models have consistent modal 
sequence. Second, the number of LTI models needed to approxi-
mate the aerodynamic variations within the flight envelop can be 
minimized. With the current advanced computational power and 
software technologies, it is not difficult to generate a large number 
of LTI models with very fine grid points that cover the entire flight 
envelop. While this large number of LTI models helps improve 
modeling accuracy, it unnecessarily burdens the flight control de-
sign and implementation efforts, since a flight controller must be 
designed for each local LTI model. Particularly, in the framework of 
switched LPV controls, it is always desirable to work with a small 
number of LTI models for control design. This will keep the num-
ber of controller switching minimal, while avoiding high order de-
pendency on scheduling parameters. In this paper, we propose an 
Adaptive Grid Step Size Determination (AGSSD) algorithm, through 
which a trade-off between the number of local LTI models and the 
modeling accuracy with guaranteed error bound can be assessed. 
Finally, each LTI model might contain large number of aeroelas-
tic modes; in addition to the rigid body dynamics, which makes 
the control design impractical. A novel model reduction process 
called Composite Modal Cost Analysis (CMCA) is developed to at-
tain a reduced-order model which is better suited for the control 
design. The essence of CMCA is to utilize the collective contribu-
tion of each aeroelastic mode throughout the gridded parameter 
space and retain those modes with significant contribution.

The approach presented above consists of the following four 
steps. First, the modal coordinate transformation is utilized to 
convert the original LTI models into the modal canonical forms, 
where each modal representation is decoupled. Second, a modi-
fied H2-norm is used to compute the alignment error between 
each mode and the modes of neighboring LTI models. To bet-
ter handle the situation where a LTI model has unstable modes, 
a σ -shifted H2-norm, denoted by H(σ−2)-norm, is defined by 
shifting the imaginary axis of the complex plane to the right 
by σ amount, where σ > 0 is chosen to be sufficiently large so 
that the H(σ−2)-norm of a transfer function is well defined. The 
H(σ−2)-norm of the error transfer function between modes of ad-
jacent LTI models is used as the modal matching criteria. This cri-
teria proves to be effective and plays a crucial role in determining 
the level of alignment, in that the smallest value indicates the clos-
est of the two modes and hence should be assigned to the same 
index order throughout the LTI models over the gridded parameter 
space. Similarly, a σ -shifted H∞-norm, denoted by H(σ−∞)-norm, 
is defined as another modal matching criteria. Third, for a given 
H(σ−2)-norm or H(σ−∞)-norm error bound, an AGSSD algorithm 
is developed to minimize the number of LTI models needed for 
linear interpolations over the gridded parameter space. This algo-
rithm proves to be effective and can significantly reduce the re-
quired number of LTI models, while providing a balanced trade-off 
with model accuracy. This result is especially critical for LPV-based 
control design. Finally, a CMCA method is used to obtain a set 
of reduced-order LTI models for actual flight controller design. In 
summary, the proposed approach not only reduces the total num-
ber of LTI models needed for covering the entire flight envelop, 
but also reduces the order of each LTI model so that designing an 
effective flight controller becomes more tractable.

For ease of presentation, we make use of the NASA Generic 
Transport Model (GTM) in longitudinal direction operating at vari-
ous flight speeds to illustrate the proposed LPV modeling approach 
described above. In particular, the GTM under consideration con-
sists of a short period mode and 20 aeroelastic modes, and its 
flight speed ranges from Mach 0.5 to Mach 0.88 at a constant 
cruising altitude. It should be noted that at Mach 0.78, the aeroe-
lastic wing is already exhibiting fluttering behavior, since in this 
condition the first torsional mode becomes unstable. Both time-
domain and frequency-domain simulations will be used to demon-
strate the effectiveness of the proposed modeling concept.

The rest of the paper is organized as follows. Section 2 presents 
mode alignment procedure that consists of modal coordinate 
transformation and alignment algorithm. A novel AGSSD algorithm 
is developed in Section 3 to minimize the number of local LTI 
models over the parameter space. A model reduction process us-
ing CMCA is presented in Section 4, which is used to extract 
a reduced-order model set containing the dominant aeroelastic 
modes. Some concluding remarks are given in Section 5.
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2. Modal alignment for multiple aeroelastic models

This section presents a novel procedure to align aeroelastic 
modes of multi-input multi-output (MIMO) LTI models generated 
from various operating conditions within the flight envelop. This 
procedure guarantees the consistency of the modal representation 
for LTI models, which can then be used for LPV controller design.

2.1. Modal coordinate transformation

Consider the following collection of LTI dynamical systems,

Gi :
{

ẋ(t) = Ai x(t) + Biu(t)
y(t) = Ci x(t)

i = 1,2, · · · , p, (1)

where Gi represents the aeroelastic LTI model at operating point i, 
in which x(t) ∈ R

nx denotes the state, u(t) ∈ R
nu the input, and 

y(t) ∈ R
ny the output. We assume there are p gridded points in 

the parameter space within the flight envelop, which also corre-
sponds to the number of local LTI models. Furthermore, we as-
sume that each LTI model contains m flexible modes. Performing 
modal coordinate transformation [26] to each local LTI model Gi

described in (1) yields

G i :
{

ẋ(t) = A i x(t) + Biu(t)
y(t) = C i x(t)

i = 1,2, · · · , p, (2)

where the system matrices are partitioned as follows,

A i =

⎡
⎢⎢⎢⎢⎣

Ai
1 0 · · · 0

0 Ai
2

. . .
...

...
. . .

. . . 0
0 · · · 0 Ai

m

⎤
⎥⎥⎥⎥⎦ ; Ai

j =
[

ai
j bi

j

−bi
j ai

j

]
,

Bi =

⎡
⎢⎢⎢⎣

Bi
1

Bi
2
...

Bi
m

⎤
⎥⎥⎥⎦ , C i = [

C i
1 C i

2 · · · C i
m

]
.

(3)

Note that Ai
j denotes a real matrix form for a pair of complex 

eigenvalues λi
j = ai

j ± jbi
j , where λi

j denotes the jth eigenvalue 
of the ith LTI model, hence each Ai

j represents a flexible mode. 
In this study, we consider two sources of modal mismatch when 
aligning modes from two different aeroelastic LTI models. In gen-
eral, the sequential order of modal frequencies and mode shapes 
between the two LTI models G i and G k , where k ∈ [1, 2, · · · , p]
and k �= i. That is, the sequential order of block diagonal elements 
in A i and A k might not be aligned, and this misalignment is 
caused by the notable variations in aeroelastic behaviors from one 
flight condition to another, such that the order of one or more 
modes is reversed when comparing the two LTI models; see for 
instance Fig. 1(a). As a consequence, performing linear interpola-
tion between G i and G k will result in an erroneous, mismatched 
LTI model. Another source of modal mismatch is the variations in 
the plant matrices Bi and C i that could lead to different normal-
ization with respect to each mode [15].

Since the aeroelastic dynamics vary continuously over the vary-
ing parameters, we adopt the transfer function representation to 
describe the modal dynamics for each given LTI model.

2.2. Modal alignment algorithm

From the structure of G i described in (2) and (3), the modal 
transfer function for each mode in G i can be expressed as
Fig. 1. An illustration of modal alignment process (a) misaligned modes (b) aligned 
modes.

Gi
j(s) = C i

j(sI − Ai
j)

−1 Bi
j , j = 1,2, · · · ,m ; i = 1,2, · · · , p, (4)

and the total transfer function for each LTI model G i in (2) can be 
written as a sum of individual modal transfer function as follows,

G i(s) :=
m∑

j=1

Gi
j(s) =

m∑
j=1

C i
j(sI − Ai

j)
−1 Bi

j , i = 1,2, · · · , p. (5)

The goal of this section is to develop an automated alignment 
method to match modes with the closest dynamic properties at 
neighboring LTI models, such that all local LTI models will have 
consistent realizations suitable for LPV control design. To this end, 
we assume that all the local systems are already transformed into 
the modal transfer function form as given in (4). The modal align-
ment objective is to identify the closest match of the jth mode 
at ith grid point Gi

j(s) with the kth modes Gi+1
k (s) at the neigh-

boring (i + 1)th grid point, where j, k = 1, · · · , m. Therefore, once 
a matched mode is identified, the sequential order of modes in 
G i+1 needs to be permuted so that the jth mode at (i + 1)th 
grid point has the same order (index) as the jth mode at ith grid 
point. Fig. 1(b) shows the aligned aeroelastic modes within each 
LTI model. This framework will be used in Section 3 for develop-
ing AGSSD algorithm.

A modified H2-norm is proposed as a means to measure the 
modal mismatch. Note that the H2-norm for a stable jth mode at 
ith grid point Gi

j(s) is defined as [27]

‖Gi
j(s)‖2

2 = trace(C i
j P i

jC
i′
j ) ,

where P i
j > 0 is the unique solution to the following Lyapunov 

matrix equation,

Ai
j P i

j + P i
j Ai′

j + Bi
j Bi′

j = 0 . (6)

Note that the H2-norm is only defined for the stable systems, 
however, for a flexible wing aircraft, some aeroelastic modes can 
become unstable or flutter at higher Mach number, in which case 
the H2-norm is not defined. To handle this situation, we intro-
duce a notion of relative stability in frequency domain by shifting 
the imaginary axis to the right by σ amount, such that in the 
new shifted complex plane, all modes become stable hence we 
can compute the H2 norm for each modal error transfer function. 
Mathematically, this frequency shift concept can be described as 
follows,

Gi
j(s + σ) = C i

j[(s + σ)I − Ai
j]−1 Bi

j ,

j = 1,2, · · · ,m ; i = 1,2, · · · , p,
(7)
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where σ > 0 is properly chosen such that it is greater than the 
largest positive real part of all unstable modes over the LTI model 
set. Therefore, the notion of H(σ−2)-norm is defined as follows,

‖Gi
j(s)‖2

σ−2 = ‖Gi
j(s + σ)‖2

2 = trace(C i
j P̄ i

jC
i′
j ), (8)

where P̄ i
j > 0 satisfies the following Lyapunov equation,

(Ai
j − σ I) P̄ i

j + P̄ i
j(Ai

j − σ I)′ + Bi
j Bi′

j = 0. (9)

As mentioned earlier, by shifting the imaginary axis to the right 
by σ , the resulting system matrix Ai

j − σ I will be stable so that 
the H(σ−2)-norm is well-defined. Similarly, we can introduce the 
H(σ−∞)-norm of a rational transfer function as

‖Gi
j(s)‖σ−∞= ‖Gi

j(s + σ)‖∞, (10)

in which the H∞-norm is defined as

‖Gi
j(s)‖∞= sup

ω
{σmax(Gi

j( jω))}, (11)

where σmax(·) denotes the maximum singular value.
After transforming all the transfer functions into the shifted fre-

quency domain, the following H(σ−2) criterion is used to measure 
the distance between any two modes of the two neighboring grid 
points, i and i + 1,

Mi+1
j = ‖Gi

j(s) − Gi+1
k (s)‖σ−2 ,

i = 1,2, · · · , p − 1, j,k = 1,2, · · · ,m,
(12)

where Mi+1
j denotes the H(σ−2)-norm of the error transfer func-

tion between the jth mode at grid point i and the kth mode at 
grid point i + 1. Note that the smallest value will indicate the two 
modes have the similar dynamic properties. By utilizing (12) for 
all j and k, we can identify the correct permutation index in G i+1

so that all modes in G i and G i+1 are sequentially aligned. Thus, 
this alignment process guarantees consistent variations of the flex-
ible modes over the entire flight envelope. Algorithm 1 in Fig. 2
illustrates this iterative modal alignment process.

As mentioned earlier, the proposed approach is applied to the 
NASA Generic Transport Model (GTM) shown in Fig. 3. A set of 18 
local LTI models are generated according to various flight speeds 
ranging from Mach 0.5 to Mach 0.88, as shown in Table 1. We as-
sume that both longitudinal rigid body states and aeroelastic wing 
states are available for measurement. For aeroelastic measurement, 
as depicted in Fig. 3, we take outputs from 5 equally spaced data 
points for both bending and torsional displacements and their 
rates. Each local LTI model consists of 20 aeroelastic modes and 
one rigid body short period mode. However, in this study, we focus 
only on the aeroelastic modes, hence we set p = 18 and m = 20.

To demonstrate the effectiveness of the proposed modal align-
ment process, the modes within each LTI model are intention-
ally shuffled to generate modal inconsistency among LTI models. 
Fig. 4 illustrates before and after applying the modal alignment 
algorithm, where the left hand side shows the initial scrambled 
modes and the right hand side the aligned modes. It is clear from 
Fig. 4 that, despite the severe modal inconsistency within each LTI 
model, Algorithm 1 (Fig. 2) is able to successfully align all the 
modes sequentially.

The frequency responses have also been generated to examine 
modal alignment over the entire speed range. Fig. 5 shows the fre-
quency responses of mode #13 before and after the execution of 
Algorithm 1. It is apparent that the proposed modal alignment al-
gorithm is able to keep track of all the modes successfully over 
the entire flight profile. It is worth mentioning that Hσ−∞ criteria 
Fig. 2. Algorithm 1 – modal alignment algorithm.

Fig. 3. GTM with five equally-spaced measurement points along the wing.

have been studied also for mode alignment and produced exactly 
the same results.1

3. Adaptive grid step size determination (AGSSD)

With the current advanced computing power and software ca-
pabilities, it is not difficult to generate a large number of LTI mod-
els over the gridded parameter space within the flight envelop, for 
the purpose of improved model accuracy for flight control design. 
However, from the LPV control design point of view, be it switch-
ing [28,29] or non-switching [30], a minimum number of local 

1 It is worth mentioning that all flexible modes of the GTM model are complex 
conjugate. The developed modal alignment algorithm is able to align these modes 
successfully over the entire range of flight speed. However, other scenarios exist 
where under-damped complex modes could become over-damped real modes, and 
vice versa, as flight condition changes. This problem is called “mode veering phe-
nomena”. The current mode alignment algorithm is not designed to handle this 
general scenario nor to handle the defective systems. However, these will be our 
future research topics.
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Table 1
GTM models at various Mach numbers.

Local LTI model G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G 10 G 11 G 12 G 13 G 14 G 15 G 16 G 17 G 18

Mach number 0.5 0.52 0.55 0.57 0.60 0.62 0.65 0.67 0.70 0.72 0.74 0.75 0.76 0.77 0.78 0.80 0.85 0.88

Fig. 4. Modal alignment: scrambled (left) vs. aligned (right).

Fig. 5. Frequency response of mode#13: scrambled (left) vs. aligned (right).
LTI models in the problem setup is always desirable, because this 
would minimize the number of local controllers needed for con-
trol design, reduce the number of Linear Matrix Inequalities (LMIs) 
required for controller synthesis, and eliminate numerical issues 
during the control design. Now, the challenge is how to reduce the 
number of LTI models without sacrificing model accuracy. In this 
section, we propose a novel adaptive algorithm to adjust the grid 
step size with prescribed error bound. Again, we utilize the no-
tions of H(σ−2)- and H(σ−∞)-norm defined earlier as metrics to 
measure the modeling error.

To this end, we assume all the LTI models in the gridded pa-
rameter space have been aligned by following the modal alignment 
algorithm, Algorithm 1. Let ‖G̃ i,k(s +σ)‖2 denote the H(σ−2)-norm 
of the modeling error between G i and G i+k , i.e.

‖G̃ i,k(s)‖2
σ−2 = ‖G i(s) − G i+k(s)‖2

σ−2 . (13)

Let δ > 0 be a prescribed H(σ−2)-norm error bound, then all the 
LTI models between G i and G i+k , k > 1, can be eliminated, if
‖G̃ i,k(s)‖σ−2 ≤ δ and ‖G̃ i,k+1(s)‖σ−2 > δ . (14)

In other words, if the conditions in (14) are satisfied for a given 
error bound δ, all the LTI models between indexes i and i + k
can be considered redundant and hence eliminated without much 
impact on the overall model accuracy. The detailed AGSSD pro-
cess is described in Algorithm 2. Similarly, we can also utilize the 
H(σ−∞)-norm to compute the modeling error, i.e.

‖G̃ i,k(s)‖2
σ−∞ = ‖G i(s) − G i+k(s)‖2

σ−∞ , (15)

and the same AGSSD algorithm can also be applied to attain the 
reduced number of LTI models for a given δ error bound. Note 
that the choice of δ is critical, for it dictates the number of re-
tained LTI models at the end of AGSSD algorithm. To illustrate this, 
both H(σ−2)- and H(σ−∞)-norm are used in AGSSD algorithm to 
process the 18 LTI aeroelastic GTM models given in Table 1. Fig. 6
shows the number of retained LTI models as functions of H(σ−2)

and H(σ−∞) error bound. As expected, these two norms render 
different results. However, both norms show that as the require-
ment on the error bound becomes tighter, additional LTI models 
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Algorithm 2. Adaptive grid step size determination (AGSSD) algorithm.

• Set H(σ−2)-norm (or Hσ−∞-norm) error bound δ.
• Let i ← 1 and Ind ← [1]; and given δ > 0 and number of LTI models p.

while i < p − 1 do

• Let k ← 1.

while k ≤ p − 1 do

• Calculate ‖G̃ i,k(s)‖2
σ−2 using (13) (or ‖G̃ i,k(s)‖2

σ−∞ using (15)).

if δ > ‖G̃ i,k(s)‖2
σ−2 (or δ > ‖G̃ i,k(s)‖2

σ−∞ ) then
k ← k + 1;

else if k = 1 then
Ind ← [Ind i + k], i ← i + k;

else
Ind ← [Ind i + k − 1], i ← i + k − 1, k ← 1;

end
if i = p − 1 then

Ind ← [Ind i + k];
Break

else if i + k > p then
Ind ← [Ind i + k − 1];
Break

end
end
if i + k > p then

Break
end

end

will need to be retained in order to meet the prescribed level of 
model accuracy. For instance, for H(σ−2)-norm error bound of 300, 
we only need to retain eight LTI models out of the original eigh-
teen models to cover the entire flight regime. However, it is still 
unclear as to what that specific δ error bound means in assess-
ing the level of model mismatch between any two LTI models. To 
address this, for a given error bound, we need to examine both 
the time domain and frequency domain responses from the two 
LTI models and correlate the level of model mismatch to the er-
ror bound. Through this exercise, we can determine the acceptable 
δ error bound and hence the number of retained LTI models in 
the gridded parameter space to be used for subsequent model re-
duction. Figs. 7–10 show the time domain and frequency domain 
comparisons of the linearly interpolated LTI models, G 6 (Mach 
0.62) and G 13 (Mach 0.76), at two levels of error bound, δ = 300
and δ = 600, based on H(σ−2)-norm. As shown, when δ = 300 the 
responses from interpolated models match very well with those 
from the exact model, whereas when δ = 600 the responses of the 
interpolated model shows a large deviation from the actual model.

On the other hand, when utilizing Hσ−∞-norm as a metric, at 
δ = 300 we see that we only need 5 LTI models to cover the entire 
flight envelop. However, for validation purpose we perform a linear 
model interpolation between G 1 (Mach 0.5) and G 12 (Mach 0.75) 
to attain the interpolated model G 7 (Mach 0.65). Fig. 11 shows 
the time-domain simulations of the interpolated G 7 model versus 
the actual G 7 model, and it shows a large deviation. This indicates 
that Hσ−∞ error bound of 300 is not acceptable, though it renders 
fewer number of LTI models. Furthermore, if we choose Hσ−∞ er-
ror bound of 200, we will need 6 LTI models, saving one LTI model 
compared to the case with Hσ−∞ error bound of 300. Fig. 12
shows the validation of the interpolated G 5 (Mach 0.6) derived 
by interpolating between G 1 (Mach 0.5) and G 8 (Mach 0.67). Sim-
ilarly, Fig. 13 shows the validation of the interpolated G 10 (Mach 
0.72) by interpolating G 8 and G 13 (Mach 0.76). These time-domain 
simulations reveal that Hσ−∞ error bound of 200 renders an ac-
ceptable result.
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Fig. 7. Time-domain simulations as function of error bound (G 6, Mach 0.62).

Model reduction

Because of the practical limitations on control actuation band-
th and the needs to lower computational burden in actual 
lementation, model reduction is often an essential part of 

deling and control effort for any physical systems of large di-
nsions. Following the two algorithms presented in the previ-
 sections, we have attained a reduced number of LTI models 
h all their modes properly aligned within each LTI model. How-
r, each LTI model still contains very high number of flexible 
des. Hence, in this section we introduce the notion of Com-
ite Modal Cost Analysis (CMCA), through which we can attain 
educed-order model that is better suited for flight control de-
n.

 Composite modal cost analysis

The basic idea behind Modal Cost Analysis (MCA) [31,32] is to 
mine the contribution of each flexible mode to the mission ob-
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Fig. 8. Frequency-domain responses as function of error bound (G 6, Mach 0.62).

Fig. 9. Time-domain simulations as function of error bound (G 13, Mach 0.76).

jectives in a control system. A metric of modal contribution can be 
calculated in terms of output covariance, from which contribution 
of each mode is evaluated and ranked from high to low. This ap-
proach is used to derive a reduced-order model from a full-order 
model by neglecting less significant modes. Recall the modal coor-
dinate representation of a LTI model G i described in (2), subjected 
to the disturbance input,

G i :
{

ẋ(t) = A i x(t) + Biu(t) + D i w(t)

y(t) = C i x(t)
i = 1,2, · · · , p, (16)

where w(t) ∈ R
nw is the random disturbance input with intensity 

W > 0 and the system matrices (A i, Bi, C i) are block matrices 
as given in (3). Similarly, the matrix D i can be partitioned accord-
ingly as follows,
Fig. 10. Frequency-domain responses as function of error bound (G 13, Mach 0.76).

Fig. 11. Time-domain simulations of the interpolated G 7 model vs. actual model at 
Hσ−∞ error bound of 300.

D i =

⎡
⎢⎢⎢⎣

Di
1

Di
2
...

Di
m

⎤
⎥⎥⎥⎦ .

If A i is Hurwitz, then the open-loop output covariance cost for G i

is given by [33]

Y i := trace(C i P iC i′) , i = 1,2, · · · , p, (17)

where P i > 0 is the controllability Gramian matrix satisfying the 
following Lyapunov equation,
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Fig. 12. Time-domain simulations of the interpolated G 5 model vs. actual model at 
Hσ−∞ error bound of 200.

Fig. 13. Time-domain simulations of the interpolated G 10 model vs. actual model 
at Hσ−∞ error bound of 200.

P iA i′ + A i P i + D i W D i′ = 0, i = 1,2, · · · , p. (18)

Let ν i
j denote the jth modal contribution of ith LTI model G i to 

the output covariance, then noting the modal block partitioning of 
the matrices (A i, D i, C i), we can deduce that

Y i =
m∑

ν i
j ; ν i

j := trace(C i
j P i C i′

j ) , i = 1,2, · · · , p, (19)

j=1
where C i
j P i C i′

j is a 2 × 2 output covariance matrix corresponding 
to the jth mode in G i . This indicates that the total output covari-
ance cost for G i can be expressed as a collection of its individual 
modal contribution. Therefore, we can compute the modal cost of 
each mode ν i

j from (19) and rank its contribution from high to low 
as

|ν i
1| ≥ |ν i

2| ≥ · · · ≥ |ν i
m|, (20)

where ν i
1 is the most critical mode and ν i

m the least criti-
cal mode among ν i

j , j = 1, · · · , m. Note that the modal cost 
ν i

j can be a negative value, which indicates that this particu-

lar mode is in fact helping to reduce the total cost Y i , how-
ever the total cost is non-negative. Since MCA involves solv-
ing the Lyapunov equation (18), it can only be applied to the 
stable aeroelastic modes for model reduction. Hence, for con-
ventional MCA to work, one must first identify and decompose 
the modes into stable and unstable modes, and perform MCA 
only to the stable modes for model reduction. It should be 
noted that the unstable aeroelastic modes and the aircraft rigid 
body modes are to be retained by default in the reduced-order 
model.

To perform the MCA for multiple LTI models covering a wide 
range of flight regime, we utilize CMCA, in which the collec-
tive contribution of each mode is summed up throughout gridded 
parameter space and its contribution ranked from high to low. 
In other words, if M j denotes the collective contribution of jth 
mode over all grid points, then its composite modal cost is given 
by

M j =
p∑

i=1

ν i
j ; ν i

j := trace(C i
j P i C i′

j ) , j = 1,2, · · · ,m. (21)

Similarly, we can compute the composite modal cost for each 
mode throughout the gridded parameter space and rank its contri-
bution as

|M1| ≥ |M2| ≥ · · · ≥ |Mm|, (22)

where M1 is the most contributing mode and Mm is the least 
contributing mode among M j , j = 1, 2, · · · , m. Next, we can utilize 
the proposed CMCA to each of the 20 aeroelastic modes through-
out the 18 LTI models, and the results are given in Table 2. Since 
there are two unstable modes (1st bending and 1st torsion) at 
higher flight speeds, they are omitted from CMCA computation, 
hence only 18 modal costs are shown in Table 2. Fig. 14 shows the 
modal cost of ν i

j for i, j = 1, · · · , 18, from which the composite 
modal cost is derived.

To better handle the cases with unstable modes, we extend the 
notion of CMCA by introducing a σ -shift transformation to all the 
modes throughout G i , i = 1, · · · , 18, so as to “stabilize” all the LTI 
models in σ -shifted coordinates. Table 3 lists the composite modal 
cost for all 20 aeroelastic modes after σ -shift, whereas Fig. 15
shows the individual σ -shifted modal cost. Careful examination of 
Tables 2 and 3 reveals that the most contributing modes are con-
sistent and that the summation of the first four modal costs from 
Table 2 or first six modal costs from Table 3 amounts to more than 
75 % of the total modal cost. Note that the two additional modes 
italicized in Table 3 are precisely those omitted unstable modes 
from Table 2. Therefore, we can choose six aeroelastic modes out 
of 20 modes throughout G i , i = 1, · · · , 18, to form a reduced-order 
model suited for control design. Table 4 shows an example of a 
reduced-order model containing 6 most significant modes at Mach 
0.88.



100 A.K. Al-Jiboory et al. / Aerospace Science and Technology 66 (2017) 92–102
Table 2
Composite modal cost of the stable aeroelastic modes.

Mode index 2 3 6 8 5 7 10 9 18 11 13 17 16 12 15 14 20 19

Total modal cost 468.36 357.93 314.84 161.72 133.46 99.66 82.56 53.19 33.37 28.87 23.10 13.13 11.11 7.28 6.00 3.49 1.36 0.55

Table 3
Composite modal cost of all aeroelastic modes with σ -shift.

Mode index 2 4 6 3 8 1 7 10 5 18 13 9 11 17 16 12 15 14 20 19

Total modal cost 322.84 299.39 188.44 177.54 158.35 136.86 105.93 104.78 67.30 62.72 38.91 34.45 27.06 24.23 17.73 12.26 8.97 7.56 3.20 1.48
Fig. 14. Modal cost of the stable aeroelastic modes.

4.2. Model validation

To validate the proposed model reduction process, we present 
the root-locus, and the time- and frequency-domain comparisons 
between the full-order model and the reduced-order model at var-
ious flight conditions. For this study, the reduced-order model is 
Fig. 15. Modal costs of all aeroelastic modes after σ -shift.

consisted of one rigid body short period mode and six aeroelastic 
modes chosen through the CMCA procedure presented earlier.

Fig. 16 shows the root-locus of the full-order models and 
reduced-order models over the entire flight envelope. This fig-
ure demonstrates the smooth transition of the poles over all grid 
points, which also verifies alignment of the reduced-order mod-
Fig. 16. Root-locus across flight envelope.
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Table 4
A reduced-order model with six aeroelastic modes at Mach = 0.88.

Mode ID Frequency (rad/sec) Damping ratio

1st bending (1) 10.5202 −0.0926
2nd bending (2) 11.27 0.3158
3rd bending (3) 17.0996 0.3451
1st torsion (4) 18.3889 −0.1268
2nd torsion (6) 35.4116 0.0291
4th bending (8) 68.4175 0.0251

Fig. 17. Time-domain simulations at wing tip, Mach = 0.7.

Fig. 18. Time-domain simulations at wing tip, Mach = 0.8.

els. It is clear that the unstable dynamics are kept intact in the 
reduced-order models and, as expected, the most contributing 
modes are close to the origin.

Furthermore, a series of time-domain simulations for full- and 
reduced-order models at Mach 0.7 (G 9) and Mach 0.8 (G 16) are 
conducted, and they are shown in Figs. 17 and 18, respectively. 
Except at the transient region (for torsional displacement and tor-
sional displacement rate) where high frequency contents dominate, 
Fig. 19. Frequency responses from disturbance input to bending displacement at 
wing-tip, Mach = 0.7.

Fig. 20. Frequency responses from disturbance input to pitch rate at wing-tip, 
Mach = 0.8.

overall the reduced-order model is able to successfully capture 
both rigid body dynamics and wing-tip aeroelastic behaviors of the 
full-order model. Similarly, Figs. 19 and 20 show the frequency re-
sponse comparisons between the full- and reduced-order model at 
the two flight conditions. The responses are taken from the distur-
bance input to the wing-tip bending displacement and pitch rate, 
respectively. These figures show that the reduced-order model is 
capable of capturing the dynamics of the full-order model at the 
frequency range of interest.

5. Conclusions

In this paper, we developed a novel modal alignment algo-
rithm to sequentially order the flexible modes for a collection of 
large dimensional LTI models sampled over the gridded parame-
ter space within the flight envelop. The modal mismatch criteria 
based on the σ -shifted H2- and H∞-norm were defined and uti-
lized to align modes of similar dynamic behaviors at neighboring 
LTI models. An Adaptive Grid Step Size Determination algorithm 
was developed to minimize the number of local LTI models needed 
to cover the entire gridded parameter space with guaranteed error 
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bound. This step is especially critical when designing LPV-based 
flight controllers, in which a problem setup with a small number 
of local LTI models is highly desirable. Finally, we proposed the 
concept of composite modal cost analysis and utilized it to attain a 
reduced-order model that captures essence of the full-order model. 
Throughout this paper, we used the NASA GTM aeroelastic aircraft 
models to illustrate the developed algorithms and the model re-
duction process. The analysis and simulation results demonstrated 
the effectiveness of the proposed concept.
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