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Strain sensors (e.g., fiber optic strain sensors) can be used to measure the deformation of flexible rockets 
during launches, in order to monitor and control rocket flight attitude. In this paper, strain sensors 
are instrumented on multi-axial reference strain structures for a convenient monitor of rocket bending 
vibrations. Reference strain structures are attached longitudinally along the outer surface of thin-walled 
flexible rockets. As the medium between the sensors and rocket, the structural design of reference 
strain structures, as well as the sensor spacing along them, is optimized using an integrated multi-
objective optimization approach, which ensures that the reference strain structures will accurately track 
the deformation of the rocket surface. In addition, kinematic equations are developed to allow for an 
accurate prediction of the bending deflection of the rocket center axis by using the strain data measured 
on the rocket surface. Finally, the performance of the optimal reference strain structure is evaluated using 
different numerical simulations of the flexible rocket.

© 2017 Elsevier Masson SAS. All rights reserved.
1. Introduction

In current launch vehicle attitude control systems, inertial mea-
surement units (IMU) are used to measure the rigid-body kinemat-
ics of a rocket [1]. The data that IMUs can measure are still limited. 
In particular, the bending vibration of flexible rockets needs to be 
accurately monitored and considered in rocket attitude control. Re-
cently, Fiber Optic Strain Sensors (FOSS) based on Fiber Bragg Grat-
ing have been used to measure the distributed strain of aerospace 
structures, such as rocket bodies and flexible aircraft wings [2–4]. 
One of the advantages of using FOSS arrays for measurement is 
their capability of providing a reliable sensitivity to strains of me-
chanical structures [5,6]. Another advantage of FOSS arrays is their 
small cost in weight. FOSS arrays are lightweight and may be em-
bedded at various locations of a structure without a large weight 
penalty. Recent applications of FOSS arrays in aerospace structures 
include direct measurement of structural strains/temperatures or 
structural health monitoring [2–4,7]. At the same time, with the 
advent of FOSS array interrogation systems that have a wide band-
width of more than 1,000 Hz [8], integration of attitude control 
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systems of flexible rockets with FOSS arrays becomes possible. In 
such systems, FOSS arrays may not only provide the ability to ob-
serve the rocket deformation through strain measurements, but 
also potentially facilitate the vibration control of the flexible struc-
ture using the measured data.

In doing so, a method is needed to improve the bending mon-
itoring along flexible rockets with proper and convenient imple-
mentation of the fiber optic strain sensors. Even though there are 
advantages of applying fiber optic strain sensors for monitoring 
the bending vibrations of flexible rockets, it becomes obviously in-
convenient to directly install the sensors on the rocket surface. To 
address the convenience of operation and maintenance, an indirect 
measurement approach can be considered. In this work, a modular 
design of the reference strain structures (RSS) has been considered. 
Fiber optic strain sensors are instrumented on the reference strain 
structures, which are further attached to the rocket surface. Ob-
viously, the concept of reference strain structures is implemented 
to provide spanwise placement freedom for the sensors. The fiber 
optic sensors directly measure strains of the reference structures. 
This measurement is used to indirectly track the real bending/tor-
sional curvatures of the rocket surface. Therefore, in order for this 
measurement to function reliably and properly, the placement of 
reference structures and fiber optic sensors needs to be properly 
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Nomenclature

A Cross-sectional area of rocket . . . . . . . . . . . . . . . . . . . . . . m2

Au, Av Coefficient matrices of shifted Legendre polynomials
b Width of RSS beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
d Uniform sensor spacing on each RSS beam . . . . . . . . . m
E Young’s modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPa
f i Optimization objective function
G Shear modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPa
h Thickness of RSS beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
I Moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m4

l Longitudinal linkage spacing between RSS beams and 
rocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

nsensor Number of sensors on each RSS beam
P Shifted Legendre polynomials
p Order of Legendre polynomials
r Radial linkage spacing between RSS beams and 

rocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
S B X , S BY , Sθ Bending and torsional sensitivities
u Bending deflection in the x direction . . . . . . . . . . . . . . . m
v Bending deflection in the y direction . . . . . . . . . . . . . . . m
xd Design variable for RSS design optimization
xs Design variable for sensor placement optimization

ε0 Measured strain from 0-degree oriented sensor
ε45 Measured strain from 45-degree oriented sensor
εaxial Axial strain, from FE simulation
εB X Bending strain about the x axis, processed from sensor 

measurement
εBY Bending strain about the y axis, processed from sen-

sor measurement
εs Shear strain of each RSS beam, processed from sensor 

measurement
εxy Shear strain, from FE simulation

ε
ref
s Average shear strain of RSS beams

ε
ref
0 Axial strain of rocket reference axis (positive compres-

sive)
η Modal coordinate
θ Angular spacing between each RSS beam
κx, κy, κz Bending curvatures about the x and y axes and twist 

curvature about the z axis
ν Poisson’s ratio
ρ Material density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ϕ Linear mode shape
ω Natural frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
designed and optimized to ensure precise vibration monitoring 
with the sensor measurements.

Even though studies of accurate and efficient strain/temperature 
sensing and structural health monitoring with fiber optic strain 
sensors have been performed [2–7], a reliable method to incorpo-
rate such sensors for the application of shape or vibration monitor-
ing of aerospace structures has not been fully explored. Therefore, 
it is opportune to study and prove the feasibility of FOSS for vi-
bration monitoring applications. In a previous study, a real-time 
beam bending solution [9] was developed by Su et al. to obtain the 
instantaneous beam kinematics based on the measurement data 
from discontinuous FOSS along the beam and a single IMU. Ad-
ditionally, an algorithm was developed to decouple the combined 
strain information measured by the FOSS on a beam structure into 
extensional strain, twist curvature, and bending curvatures [10]. 
By combining this with the real-time beam bending solution, it 
enables one to predict deflections of the flexible rocket along the 
center axis based on the measured strains on the rocket surface.

Since previous studies regarding real-time simulation and con-
trol system development using FOSS [8,9] have focused on a scaled 
beam model, this paper explores how such strain sensors work 
with full-size flexible rockets using the concept of reference strain 
structures. While most of the studies involved in this paper will 
be applicable to other types of sensors, FOSS are considered to 
be applied for the strain measurement of flexible rockets. To carry 
out these studies, a full-size flexible rocket with modular refer-
ence strain structures will be modeled as a platform for further 
structural dynamic and control studies. Based on the finite-element 
model, the first objective of this study is to design and optimize 
the reference strain structures, with the intent of accurately ob-
serving bending deformations of flexible rockets through indirect 
measurement. Although the main target of the strain sensor in-
strumented on RSS is to provide an accurate bending vibration 
monitoring of the flexible rocket, it is also capable of observing the 
torsional deformation. Second, the feasibility of the optimal refer-
ence strain structure will be demonstrated by evaluating its ability 
to capture the strain of a flexible rocket. Third, several parameters 
(such as the sensor placement on the RSS) involved in the pre-
diction of the bending deformations will be optimized to obtain 
the most accurate estimations out of the RSS-sensor system. Last, 
Table 1
Wall thickness of each section of the notional rocket.

Rocket section Thickness (m)

Fairing 0.015
Payload 0.005
Centaur tanks 0.012
ISA 0.005
Oxygen tank 0.005
Fuel tank 0.005
Booster and sustainer 0.01

transient simulations of the flexible rocket will be performed to 
evaluate the performance of the optimum reference structure with 
properly instrumented strain sensors, in terms of the accuracy of 
its prediction of the bending deflections of the rocket center axis.

2. Structural analysis model

In the structural analysis of the current study, a finite-element 
(FE) model of a notional flexible rocket with multi-axial RSS beams 
is created in MSC.Patran, based on the published information of 
the Atlas Centaur Surveyor launch vehicle [11]. Fig. 1 shows the 
breakdown of the rocket sections. The geometric and material 
properties are obtained from Ref. [11] and additional reports [12,
13]. The rocket model has two main components: the conical fair-
ing and the remaining cylindrical body. CQUAD4 shell elements are 
used to mesh the cylindrical surface of the rocket model, with 640 
and 72 elements in the longitudinal and circumferential directions, 
respectively. Weight and rigidity distributions of the shell elements 
are referred to the data in Ref. [11], with all tanks being empty. 
However, the properties are uniform in each section for simplic-
ity, as shown in Figs. 2 and 3. The thickness of the shell elements 
in each section is assigned according to Table 1. The Poisson’s ra-
tio ν = 0.33 is used for the materials of all sections. Internal tank 
pressures are applied on oxygen/fuel tanks and the Centaur tank 
in the following studies, where the values of the pressure are ob-
tained from the lift-off testing described in Ref. [11].

As shown in Fig. 4, an array of three RSS beams is attached 
to the outer surface of the rocket along the longitudinal direction 
through rigid links, which separate from each other by 120◦ along 
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Fig. 1. The flexible rocket model components.

Fig. 2. Rocket weight distribution.

the circumferential direction of the rocket body. The RSS beams 
run through the entire span of the rocket, excluding the conical 
faring. These beams are uniform with a rectangular cross-section, 
even though other cross-sectional shapes may be further designed. 
Strain sensors are instrumented on the RSS beams to measure 
their bending strains, which indirectly monitor the deformation of 
the rocket surface if the RSS beams and strain sensors are well 
designed and distributed. For the current study, five design param-
eters are selected, which are the longitudinal spacing l of the links 
connecting the rocket and RSS, the radial spacing r of the links 
Fig. 4. Multi-axial RSS design concept.

between the rocket and RSS, the RSS beam thickness h, the RSS 
beam width b, and the sensor spacing d along the RSS (see Fig. 4). 
Three RSS beams are needed to measure multi-axial bending and 
torsional deformations of the rocket. The first RSS (RSS1) is located 
on the rocket surface along the z direction (defined as θ = 0◦), and 
the second (RSS2) and the third (RSS3) are located at θ = 120◦ and 
240◦ , respectively, as shown in Fig. 4. The initial beam thickness is 
h = 3.18 mm and the width is b = 12.7 mm. The material prop-
erties of the RSS beams are Young’s modulus E = 70 GPa, shear 
modulus G = 26 GPa, and Poisson’s ratio ν = 0.33. CQUAD4 shell 
elements are also used to mesh the RSS beams, with 640 and 2 
elements in the spanwise (longitudinal) and width directions, re-
spectively. The side nodes along the RSS beams are rigidly linked 
to the rocket surface using RBE2 elements, as shown in Fig. 5.

3. Theoretical formulation

This section discusses kinematic equations to estimate the 
bending deflection of a flexible rocket along its center axis by using 
the measured strains from RSS beams. Furthermore, optimizations 
of the RSS-sensor configuration are introduced to obtain the most 
accurate estimation of the system.
Fig. 3. Rocket rigidity property distributions.
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Fig. 5. Link configuration between rocket surface and RSS beam.

Fig. 6. Circumferential positions of three RSS beams around the rocket (top view).

3.1. Kinematic equations

From the previous discussion, the RSS beams serve as the 
medium between the rocket and strain sensors. Even if the indi-
rect measurement of rocket deformation through the RSS beams 
is accurate, a kinematic relation is still needed, such that the de-
flection of the rocket center axis may be derived from the strains 
of the rocket surface measured by the sensors. The kinematics 
are also helpful in the further development of real-time control 
algorithms for the rocket. The kinematics involve two steps of cal-
culation. The first is to derive the bending/torsional curvatures of 
the rocket center axis from the measured strain data, following 
the approach developed in Ref. [10]. The discontinuous curvatures 
along the rocket center axis are further used to approximate the 
deflection at any location along the axis [9].

3.1.1. Estimation of rocket bending curvatures
The kinematic equations derived in Ref. [10] are applied to ob-

tain the bending curvatures of the rocket center axis about the x
and y directions according to the strains measured at the three RSS 
beams. This method was originally derived to take input strains 
from three surfaces of a boxed beam [10], which is modified to ac-
commodate three RSS beams with a 120◦ angular spacing around 
the rocket circumference. Fig. 6 shows the circumferential positions 
of the three RSS beams around the rocket. RSS C (the same as 
RSS1 in Fig. 4) is located at 0◦ from the x axis, while RSS B and A
are 120◦ from each other in the counter-clockwise direction. Strain 
sensors are placed on the three RSS beams at alternating 0◦ and 
45◦ orientations (Fig. 7). An initial data processing is performed 
to interpolate the strain data measured by 0◦-sensors, in order to 
compensate for the unavailable measurement data where sensors 
Fig. 7. Sensors placement with alternating orientations.

are placed at 45◦ as well as additional desired locations. For ex-
ample, the sensor placed at location 2 in Fig. 7 is orientated along 
45◦ . In order to obtain the strain along 0◦ at this location, one has 
to interpolate the measurement data at locations 1 and 3, where 
the corresponding sensors are both orientated along 0◦ . The same 
procedure is used to process the strain data of 45◦-sensors.

The interpolated strain data of 0◦ and 45◦ at a given longi-
tudinal location are denoted as ε0 and ε45, respectively, which 
determine the shear strain

εs = ε45 − 1 − ν

2
ε0 (1)

The shear strain of the rocket center axis at that longitudinal loca-
tion is obtained by averaging the data of three RSS beams, i.e.,

ε
ref
s = 1

3

(
εA

s + εB
s + εC

s

)
(2)

Similarly, the normal strain (positive compressive) εref
0 of the refer-

ence axis is

ε
ref
0 = εM

0 − εC
0 cos θ

1 − cos θ
,

εM
0 = 1

2

(
εA

0 + εB
0

) (3)

where εM
0 is the normal strain at point M as the middle between 

A and B (see Fig. 6), which is right on the x axis. Strains related 
to bending in the x and y axes are

εBY = ε
ref
0 − εC

0 ,

εB X = εB
0 − εM

0

(4)

Finally, the curvatures of the rocket center axis about each di-
rection can be obtained by multiplying the corresponding sensitiv-
ities S B X , S BY , and Sθ , given as

κx = εB X

S B X
, κy = εBY

S BY
, κz = ε

ref
s

Sθ

(5)

These sensitivities consist of structural properties of the rocket 
and dominant deformation modes (especially in dynamic cases). It 
is convenient to calibrate them from experiments or FE analysis in 
case of very complicated structures such as rockets by observing 
both the strains and curvatures.

3.1.2. Deflection of rocket center axis
The bending curvatures along the rocket center axis were de-

rived in the previous section, which were based on discontinu-
ous data corresponding to where the interpolation was performed. 
A further calculation is performed to recover the bending deflec-
tion at any location along the center axis from these discontinuous 
curvature data using the method introduced in Ref. [9]. At any 
time, the bending deflection of the rocket can be expressed as the 
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combination of its linear normal modes weighted by their magni-
tudes, which is

u(z, t) =
∞∑
j=1

ϕu j(z)ηu j(t) = Φuηu,

v(z, t) =
∞∑
j=1

ϕv j(z)ηv j(t) = Φ vηv

(6)

where u and v are the bending deflections in the x and y direc-
tions, Φu and Φ v are the linear bending normal modes of the 
rocket in the x and y directions, and ηu and ηv are the cor-
responding modal coordinates. The modes are calculated from a 
finite-element analysis of the full rocket model, with the modal 
information of the center axis extracted. Obviously, the modes are 
all discrete. In order to obtain the deflections at any point along 
the center axis, one can use the shifted Legendre polynomials to 
approximate the discrete modes [9], given as

Φu(z0) = P (z0)Au,

Φ v(z0) = P (z0)Av
(7)

where z0 are the discrete locations accounted in the center line 
bending modes. P is a matrix consisting of column vectors of in-
dividual shifted Legendre polynomials evaluated at z0 [9], while 
the number of involved polynomials (i.e., number of columns for 
P ) is yet to be further determined. As the mode shapes and values 
of Legendre polynomials are all known, the coefficient matrices Au
and Av are obtained by

Au = P (z0)
−1Φu(z0),

Av = P (z0)
−1Φ v(z0)

(8)

Note that the P matrix is generally not invertible. Therefore, the 
Moore–Penrose pseudo-inverse method is used in the calculation. 
Finally, with the approximated mode shapes, the nodal displace-
ments can be expressed as

u(z, t) = P (z)Auηu(t),

v(z, t) = P (z)Auηv(t)
(9)

With known bending curvatures, one may solve for the modal 
coordinate magnitudes using derivatives of the Legendre polyno-
mials, such that

ηu(t) = (
P ′′(z)Au

)−1
κ y(z, t),

ηv(t) = (
P ′′(z)Av

)−1
κx(z, t)

(10)

The approach avoids the spatial integration of the bending cur-
vatures in order to obtain the bending deflections of the rocket 
center axis.

3.2. Optimization of RSS structure and placement of strain sensors

The kinematic equations assume that the sensors can accurately 
measure the strains of the rocket surface. As discussed previously, 
RSS beams are used as the medium to install the sensors. There-
fore, the RSS beams and sensor placement on them need to be 
optimized to achieve the most accurate estimation of the rocket 
deformation. The whole optimization of RSS-sensor structures in-
cludes two sub-problems. The first is the structural design opti-
mization of the RSS beams and the other is to optimize the sensor 
spacing along the RSS beams.
Fig. 8. Surrogate-based structural optimization for RSS beams.

3.2.1. Optimization of RSS structural design
The objective of this optimization is to minimize the strain dif-

ference between the rocket surface and RSS beams, so that the 
rocket deformation is accurately measured by the sensors instru-
mented on the RSS beams. The performance of the RSS beams 
depends on their dimensions and the spacing of the linkage be-
tween the rocket and RSS beams in both radial and longitudinal 
directions (see Fig. 4). Therefore, the two objective functions of the 
optimization are the root mean square (RMS) axial and shear strain 
differences between the rocket and RSS beams. Furthermore, at-
taching RSS beams to the rocket also introduces a weight penalty, 
which should be minimized as well. The RSS structural optimiza-
tion problem is defined as

min
xd

f1(xd) =
√√√√ 1

N

N∑
n=1

(
εrocket

axial − εRSS
axial

)2
,

min
xd

f2(xd) =
√√√√ 1

N

N∑
n=1

(
εrocket

xy − εRSS
xy

)2
,

min
xd

f3(xd) = ρhb

(11)

where the superscript “rocket” indicates the strain values of the 
rocket surface and “RSS” denotes the strain values for the corre-
sponding RSS beams, and εaxial and εxy are the axial and shear 
strains, obtained from the FE analysis. The design variable xd =
{l, r, h, b}T , includes the linkage spacing in the longitudinal direc-
tion l, the radial spacing r, RSS beam cross-sectional thickness h, 
and cross-sectional width b. The design constraints are

0.05 m ≤ l ≤ 0.25 m,

0.005 m ≤ r ≤ 0.1 m,

0.003 m ≤ h ≤ 0.01 m,

0.01 m ≤ b ≤ 0.05 m,

ωrocket < ωR S S

(12)

where ωrocket are the natural frequencies of the notional rocket 
model and ωRSS are the natural frequencies of the RSS beams. 
The last constraint is to separate the natural frequencies of the 
rocket and RSS beams, so that the RSS beams are not excited by 
the vibration of the rocket. The upper limit of the longitudinal 
spacing 0.25 m gives a reasonable natural frequency range of the 
RSS beams. The optimization problem is solved with the fast elitist 
nondominated sorting genetic algorithm (NSGA-II) [14]. To accel-
erate the optimization process, a surrogate model is constructed 
using the Kriging method [15] with a finite number of sampling 
data based on the simulation results from MSC.Nastran.

The optimization process is depicted in Fig. 8. The whole pro-
cess consists of 1) developing the FE model in MSC.Patran, 2) 
collecting sampling data from the FE analysis in MSC.Nastran, 3) 
constructing the surrogate model using the Kriging method with 
the sampling data, 4) finding the optimal RSS structural design 
with the NSGA-II algorithm, and 5) performing the FE analysis us-
ing the optimal design to evaluate the objective functions.
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3.2.2. Optimization of stain sensor placement
With the RSS structural design converged to the optimum, it is 

still necessary to properly determine the number of strain sensors 
to be instrumented along RSS beams. As the kinematic equations 
presented in the previous section interpolate the measured strain 
data to calculate the bending/torsional curvatures of the rocket 
center axis, the choice of strain sensor spacing (i.e., the number 
of sensors on a RSS beam) influences the accuracy of the interpo-
lation and the estimated bending/torsional curvatures. Therefore, 
one has to minimize the following objective functions of

min
xs

f4(xs) =
√√√√ 1

N

N∑
n=1

(
κ F E M

x − κEST
x

)2
,

min
xs

f5(xs) =
√√√√ 1

N

N∑
n=1

(
κ F E M

y − κEST
y

)2
,

min
xs

f6(xs) =
√√√√ 1

N

N∑
n=1

(
κ F E M

z − κEST
z

)2
,

min
xs

f7(xs) = nsensor

(13)

where the superscript “FEM” indicates rocket center axis curvature 
values directly derived from the FE simulation using MSC.Nastran, 
while “EST” denotes the curvatures estimated by the measured 
strain data from RSS. Quantity nsensor is the number of sensors 
used on an RSS beam. If the sensors are evenly placed, the sen-
sor spacing xs is a discrete value selected from the following set 
of

xs = [0.4,0.5,0.8,1.0,1.6,2.0] m (14)

The spacing variables in the set give 16 to 80 sensors on each RSS 
beam, where the maximum number of sensors is determined by 
the capability of the data processing equipment.

The problem involves a discrete design variable, whose dimen-
sion is not large. Without applying a sophisticated optimization 
scheme, several FE simulations are performed to traverse all the 
possible design variables in the design space. The optimum solu-
tion is found after the enumerating process.

4. Numerical studies

In this section, numerical studies are presented to optimize the 
RSS beams. In addition, finite-element simulations of the flexible 
rocket with the optimum RSS beams are performed to demon-
strate the feasibility of the concept using reference stain structures 
instrumented with strain sensors to monitor the vibrations of flex-
ible rockets.

4.1. Modal characteristics of notional rocket and RSS model

A modal analysis is performed to make sure that the modal 
characteristics of the rocket FE model are comparable to the exper-
imental data in Ref. [11]. Fig. 9 shows the first two bending mode 
shapes of the rocket model. Natural frequencies of the first three 
bending modes from the modal analysis are compared with those 
of the reference rocket measured in experiments [11] as shown 
in Table 2. Free-free boundary conditions are applied in both the 
modal analysis and the experiments. Note that the natural fre-
quencies of the reference rocket were measured when the tanks 
were partially pressurized, which is not captured in the current 
model. Therefore, it is reasonable that the natural frequencies of 
the reference rocket are slightly higher than the results of the cur-
rent model. However, the natural frequencies of the current model 
Fig. 9. The first (left) and second (right) bending mode shapes.

Table 2
Natural frequencies of the current model and reference rocket.

Bending mode Direction Simulated (Hz) Experiment (Hz)

1 y–z plane 6.05 6.12
x–z plane 6.05 6.21

2 y–z plane 14.61 14.51
x–z plane 14.61 13.49

3 y–z plane 24.90 31.90
x–z plane 24.90 31.40

Table 3
Change of the first natural frequency of RSS 
with longitudinal linkage spacing.

Axial spacing l (m) Frequency (Hz)

0.1 1516.2
0.25 234.86
0.5 65.345

are in the expected range for the study. In addition, the natural 
frequencies of RSS beams should be out of the range of the fre-
quencies of both the rocket and the control system (0 to 200 Hz). 
Table 3 shows the lowest natural frequencies of the RSS beams 
with the change of the longitudinal spacing of the linkage that 
connects the RSS beams and the rocket. According to Tables 2 and 
3, it is preferred to constrain the longitudinal spacing of the RSS-
rocket linkage to be less than 0.25 m, so that the natural frequen-
cies of the RSS beams do not interfere with those of the rocket.

4.2. Optimization of RSS beam structure

For optimization studies of RSS beams, the baseline RSS beams 
are defined with the thickness and width of h = 0.00318 m and 
b = 0.0127 m, respectively. The three RSS beams are connected to 
the flexible rocket surface with rigid links, with the initial longi-
tudinal and radial spacing of l = 0.05 m and r = 0.015 m, respec-
tively. The rocket is cantilevered at its root, while tip loads of 1 kN 
are applied in both the x and y directions. An additional torque of 
1094.4 kN-m about the z axis is also applied. The fuel tank pres-
sure is 405 kPa and the oxygen tank pressure is 212.5 kPa. The 
Centaur tank is pressurized at 103 kPa. Note that even though a 
complex load of both bending and torsion is applied, the target of 
the study is to optimize the RSS beams so as to accurately monitor 
the bending deformation of the rocket using the measured sensor 
data. Fig. 10 shows the differences of axial and shear strains be-
tween the baseline RSS1 and the connected rocket surface along 
the RSS1. Results of RSS2 and RSS3 are omitted, since they are 
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Fig. 10. Differences of axial and shear strains between the baseline RSS1 and the rocket surface with the static loads.

Fig. 11. RMS axial and shear strain differences with different longitudinal spacings.
very similar to those of RSS1. Because of the thickness discontinu-
ity between different rocket sections, relatively large axial strain 
differences are observed at boundaries between every two sec-
tions. The shear strain difference grows one order larger at the 
top. These differences can be reduced with properly designed RSS 
beams and sensor placement.

Some statements about the boundary condition used in the cur-
rent study are provided here. All simulation cases provided in this 
paper use the cantilever boundary condition at the root of the 
rocket. While this is not the case in a real rocket flight, it has 
been used in rocket ground vibration tests. In addition, the purpose 
of this paper is to explore and demonstrate the concept of using 
RSS to track the lateral bending vibration of flexible rockets, which 
can be easily excited and simulated with a cantilever boundary 
condition and applied loads at the tip. However, the methodology 
developed in this paper to design and analyze rocket-RSS struc-
tures does not exclude the free-free flight conditions for rockets.

The integrated multi-objective optimization is performed to 
find the optimal RSS dimensions and linkage spacing between the 
rocket and RSS beams. The Kriging-based surrogate model is firstly 
constructed using samplings based on FE analyses in MSC.Nastran. 
Figs. 11–14 show the fitted curves of the RMS axial and shear 
strain differences with respect to each RSS structural design vari-
able.

The optimum structural design of the RSS beams is found by 
using the fitted curves. The surrogate-based optimization provides 
the Pareto optimal choices as shown in Fig. 15. By placing the 
priority on minimizing the axial strain difference between the 
rocket and RSS beams, the optimal design is chosen as l = 0.05 m, 
r = 0.005 m, h = 0.005 m, and b = 0.05 m, which corresponds to 
the cross in Fig. 15. The cross-sectional weight of each RSS beam 
after the optimization is 0.675 kg/m.

A static analysis is performed with the optimum RSS design to 
evaluate its performance. The applied load and tank pressure are 
the same as the case with the initial design. Fig. 16 shows the ac-
tual axial and shear strains on the rocket surface and the optimal 
RSS1 beam with the applied static loads, while their differences are 
plotted in Fig. 17. As a check, the performance of the optimum RSS 
beam design with a further reduced radial link spacing r = 0.001
m, is also illustrated in Fig. 17, which apparently provides a fur-
ther reduction of the shear strain difference between the rocket 
and RSS beam. However, this design is out of the design space as 
it violates the geometrical constraints considering the thickness of 
the RSS beams. Additional clearance is also required to install the 
sensors and to avoid a contact between the RSS beams and the 
rocket surface. Therefore, the design with r = 0.005 m is used in 
the following studies. By comparing the current results with those 
from Fig. 10, it is evident that the performance of the optimized 
RSS beams is significantly improved with much lower strain differ-
ences between the RSS beams and rocket surface.

4.3. Optimization of sensor spacing on RSS beams

Determining the optimal sensor spacing along the RSS beams 
is the objective of this section. The loading condition is the same 
as the previous optimization cases. Figs. 18 and 19 plot the RMS 
curvature differences (as defined in Eq. (13)) with respect to the 
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Fig. 12. RMS axial and shear strain differences with different radial spacings.

Fig. 13. RMS axial and shear strain differences with different RSS beam thicknesses.

Fig. 14. RMS axial and shear strain differences with different RSS beam widths.
different sensor spacing. Since the sensitivities are well-calibrated 
for each variable, the estimations are pretty accurate in each case. 
Eventually, the sensor spacing is selected as 1.6 m by considering 
the balance of the accuracy of estimations and the number of sen-
sors. In this case, the number of sensors to be installed on each 
RSS beam is 20. Figs. 20 and 21 highlight the agreement between 
the bending curvatures of the rocket center axis, obtained directly 
from the FE analysis and the estimation using the sensor measure-
ment data, respectively.
4.4. Selection of Legendre polynomials

Finally, the order of Legendre polynomials is determined with 
the optimum RSS design. This ensures an accurate prediction of 
the bending deflection at any location along the rocket center axis 
based on the discontinuous curvature data derived from the sen-
sor measurement. The approach described in Eq. (9) is essentially 
to use the Legendre polynomials to fit the discrete mode shapes, 
so as to obtain continuous functions of mode shapes. As discussed 
in Ref. [9], this approach may create large fitting errors on both 



N. Tsushima et al. / Aerospace Science and Technology 71 (2017) 285–298 293
Fig. 15. Pareto-fronts of the RSS design optimization.

Fig. 16. Axial and shear strains on the rocket surface and the optimal RSS1 with the static loads.

Fig. 17. Axial and shear strain differences on the rocket surface and the optimal RSS1 with the static loads.
ends of the domain (root and tip of the rocket in this study), if the 
available discrete points representing the modes and the number 
of Legendre polynomials do not properly match. To ensure the ac-
curacy, a parametric study was carried out to calculate the rocket 
bending deflection using a varying number of the Legendre poly-
nomials. The results are compared to the FE solution. For good 
convergence and robustness for the following transient studies, the 
polynomials up to the 22nd order are used although the first 9 
polynomials provide the most accurate estimation with the static 
loading case. The 22 polynomials with interpolated strain data on 
each RSS beam can provide accurate estimations of the bending 
deflections as shown in Fig. 22.

4.5. Performance evaluation

The optimum design of RSS beams and sensor spacing were 
found based on static simulations. Therefore, it is necessary to 
ensure that the optimum design can properly estimate transient 
bending deflections of the flexible rocket. To understand transient 
responses of the rocket-RSS system, a frequency analysis is per-



294 N. Tsushima et al. / Aerospace Science and Technology 71 (2017) 285–298
Fig. 18. RMS bending curvature differences with different sensor spacings.
Fig. 19. RMS twist curvature difference with different sensor spacings.

formed with loads of different frequencies. Lateral loads of 100 kN 
are applied in both the x and y directions with a 10.94 × 106 N-m 
torque applied about the z axis at the tip of the rocket. The tank 
pressures are the same as the previous cases, yet they are applied 
with a 1-s linear ramp to avoid the transient effects at the begin-
ning of simulations. The loads are applied in three ways: one step 
input and two sinusoidal inputs with longer durations at 5 and 
20 Hz, respectively (denoted as “Step”, “5 Hz”, and “20 Hz”). The 
simulations are performed for 5 s with 
t = 10 ms for the first 
two cases and 2 s with 
t = 1 ms for the last case. The step load 
Fig. 21. Twist curvature about the z axis from FE simulation and Estimation.

in the first case is applied between 1.10 and 1.15 s. The sinusoidal 
loads in the other two cases are applied from the time point that 
is 1.1 s after the tank pressures are fully ramped up.

Figs. 23 and 24 show the single-sided spectra of bending vibra-
tions in the x and y directions and torsional vibration about the z
axis at the 30-m span under different loads. According to Fig. 23, 
the dominant bending vibration of the notional rocket is at its nat-
ural frequency. Therefore, bending sensitivities for the curvature 
estimation are calibrated for the simulation of the rocket model 
Fig. 20. Bending curvatures from FE simulation and estimation.
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Fig. 22. Comparison between estimated deflections of rocket center axis and FE simulation results (first 22 Legendre polynomials used).

Fig. 23. Single-sided spectra of bending vibrations at the 30-m span.
Fig. 24. Single-sided spectra of torsional vibration at the 30-m span.

with a step load input. On the other hand, the dominant torsional 
vibration of the rocket model in the cases are different based on 
excitations as shown in Fig. 24. Hence, it is better to calibrate the 
torsional sensitivity for the curvature estimation with respect to 
each excitation.

Figs. 25 and 26 show the bending deflections and twist curva-
ture from FE simulations and estimations at t = 5 s with the step 
tip load. According to Fig. 25, the estimation of bending captures 
the deflection shapes and magnitudes due to the instantaneous 
disturbance at the vehicle top accurately. The estimation of twist 
curvature also captures the tendency of the deformation, yet the 
accuracy is relatively low compared to that of bending. The er-
ror close to the loading point (between span of 26 and 32 m in 
Fig. 26) is especially high. The bending deflections and twist curva-
ture from FE simulations and estimations with the two sinusoidal 
tip loads at t = 5 and 2 s, respectively, are plotted in Figs. 27 to 
30. Fig. 27 shows that the bending deflections can be precisely 
predicted with the low-frequency vibration dominated by the first 
bending mode. The torsional deformation with the low-frequency 
excitation (see Fig. 28) is estimated accurately up to 24-m span, 
but the accuracy is degraded around the excitation point, the same 
as what was observed in Fig. 26. With the high-frequency tip ex-
citation, the second bending mode plays a role in the vibrations 
as shown in Fig. 29. However, the bending estimation still remains 
accurate. On the other hand, the twist estimation with the high-
frequency excitation exhibits the similar behavior to the previous 
cases.

To quantify the overall accuracy of the estimated deflections (u
and v in the x and y directions) or twist curvature κz , one may 
calculate the RMS difference of these quantities at each time using 
the spanwise values from the FE simulation and estimation (sim-
ilar to Eq. (13)). The “maximum error” is found by using the ratio 
between the maximum RMS difference and the maximum abso-
lute value of the corresponding variable in the range of simulation 
time. For example, the maximum error the bending deflection in 
the x direction is

e =
(

√
1
N

∑N
n=1(uF E M − uEST)2)max

F E M
(15)
(u )max
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Fig. 25. FE simulation and estimation of deflections at 5 s with the step tip loads.
Fig. 26. FE simulation and estimation of twist curvature at 5 s with the step tip 
loads.

The estimation errors of other quantities are defined in a similar 
way. Following these definitions, Table 4 lists the maximum errors 
for the deflections and curvature. The results agree with the pre-
vious observations. The maximum error of bending deflections is 
less than 10%, which means the bending deflections are predicted 
with good accuracy at any time point and any spanwise location. 
The maximum error of twist curvature is high due to the discrep-
ancies between the FE solutions and the estimations around the 
loading point (over span of 20 m). Based on the analysis, the es-
timations based on the RSS measurements can provide reasonably 
accurate information about the rocket mode shapes and its magni-
tudes at any locations along the rocket at any time.

To ensure the validity of the sensitivities, other simulations 
with loads of different magnitudes and directions are performed. 
Table 5 shows the comparison of maximum errors with 5-Hz tip 
loads of different magnitudes and directions. It can be seen that 
the bending estimation is still very robust even with different load 
magnitude and direction.

5. Discussion

This study has demonstrated that with the combination of 
the strain sensors and reference strain structures, it can achieve 
cost-effective and reliable monitoring of shape/vibration of flex-
ible rockets. In the optimization process of the RSS beams, one 
of the design constraints was that natural frequency of the RSS 
beams should be separated from those of the rocket, so that the 
RSS beams would not be excited by the vibration of the rocket. 
From the study, this design constraint was well satisfied. At this 
development phase, the number of sampling points used for the 
Kinging method was sufficient to demonstrate the concept of the 
surrogate-based optimization approach, which also provided feasi-
ble solution of the optimal design. It is preferable that a quality 
check of the Kriging surface would be performed, which might 
require more sampling points for the surface generation and vali-
dation. Additionally, one needs to be cautious when selecting the 
Legendre polynomials for approximation of mode shapes. Gener-
ally, higher order polynomials may cause inaccurate fitting results, 
as displayed in Ref. [9]. However, according to the current results, 
the inclusion of up to the 22nd-order Legendre polynomial still 
Fig. 27. FE simulation and estimation of deflections at 5 s under the 5-Hz sinusoidal tip loads.
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Fig. 28. FE simulation and estimation of twist curvature at 5 s under the 5-Hz sinu-
soidal tip loads.

provided good convergence and satisfactory robustness. The rea-
son was that enough data (more than 640 points) along the span 
of rocket were used to approximate the mode shapes of the rocket. 
Note that the numeric studies of estimating the performance of 
RSS beams used the cantilever boundary condition with applied 
tip load excitations. Further studies that simulate launches of flexi-
ble rockets with engine excitation at the bottom will be performed 
in the future. Finally, as stated in the Introduction, this paper ex-
plored how the strain sensors and RSS structures work together 
with full-size flexible rockets. Therefore, the full-size rocket model 
with specific parameters were used in the RSS design and opti-
mization. To make the study generic and applicable to different 
rockets, future work will consider structural scaling in the method-
ology, where dimensionless parameters can be used.

6. Conclusions

Multi-axial reference strain structures were studied in this pa-
per to monitor the bending and torsional vibrations of flexible 
rockets. Three RSS beams with 120◦ angular spacing were attached 
on the surface of the rocket, where strain sensors were instru-
mented. Even though the use of RSS beams only provides indirect 
measurement of rocket deformations, this measurement approach 
has the advantages in cost and reliability. Kinematic equations 
were derived to estimate the multi-axial bending and torsional de-
formations of the rocket center axis, based on the measured strain 
data on its surface. To enable accurate estimation of such defor-
mations, the strains measured by the sensors on the RSS beams 
Fig. 30. FE simulation and estimation of twist curvature at 2 s under the 20-Hz 
sinusoidal tip loads.

must be the same as those of the rocket surface. While a dif-
ference might exist in such an indirect measurement, the error 
was minimized by the optimally designed RSS beam structure and 
the placement of the strain sensors long them. A surrogate-based 
optimization algorithm was developed by integrating the Kriging 
method and NSGA-II. The optimization algorithm allowed for a 
simple integration with the finite element analysis with MSC.Nas-
tran. From the two-step optimization process, one could find the 
optimum structure design of the RSS beams (including the pa-
rameters of the linkage spacing in the longitudinal direction l, the 
radial spacing r, RSS beam cross-sectional thickness h, and cross-
sectional width b), which featured the minimized error between 
the strains of the rocket surface and the corresponding RSS beams. 
In the current study, strain sensors were considered to be evenly 
placed along the RSS beams. The optimum sensor spacing is cho-
sen by considering a balance between the data processing accuracy 
and the allowed channel of data collection. The optimized RSS 
structure and the sensor placement were then verified in transient 
simulations. The maximum error of bending deflections under the 
tip load with a cantilever boundary condition was less than 1.7% 
for the excitation with a step load. The errors of the forced vi-
bration of 5 and 20 Hz sinusoidal excitations were 2.7% and 9.8%, 
respectively. The bending estimation was also accurate with dif-
ferent load magnitudes and directions. The estimation of torsional 
curvatures was accurate up to 20-m span, but relatively large er-
rors were observed around the tip where the loads were applied.

This study has demonstrated the concept of monitoring the 
bending and torsional vibrations using reference strain structures. 
Fig. 29. FE simulation and estimation of deflections at 2 s under the 20-Hz sinusoidal tip loads.
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Table 4
Ratios of maximum RMS differences to maximum deflections and curvatures with 
different excitations.

Excitation Deflection in X (%) Deflection in Y (%) Curvature 
about Z (%)

Step load 1.70 1.47 21.40
Sinusoidal at 5 Hz 2.66 2.63 8.47
Sinusoidal at 20 Hz 7.95 9.76 52.52

Table 5
Ratios of maximum RMS differences to maximum deflections and curvatures under 
the tip loads at 5 Hz with different loading magnitudes and directions.

Magnitude 
scale

Direction (degree) Deflection in X (%) Deflection in Y (%)

1 45 2.66 2.63
10 45 2.77 2.75
1 60 2.83 2.75

The accuracy of the bending estimation, which is more important 
than torsion in attitude control of rockets, make it feasible to be 
used in control development of flexible rockets. The removable 
RSS beams provide the spanwise placement freedom of strain sen-
sors. Furthermore, the maintenance of RSS beams (e.g., redesign 
and replacement) is convenient without interfering with the main 
structure of the rocket.
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