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In highly flexible aircraft, the large structural slenderness associated to their high-aspect-ratio wings, 
while bringing challenges to the design, analysis, and control of such aircraft, can be pro-actively 
exploited for improving their flight performance, resulting in mission-adaptive morphing configurations. 
This paper studies the optimum wing bending and torsion deformation of highly flexible aircraft, with 
distributed control loads along the wing span to achieve the optimum wing geometry. With the goal of 
improving flight performance across the entire flight regime, a modal based wing shaping optimization is 
carried out, subject to the requirement of trim and control cost limitation. While a single objective of the 
minimum drag can be used to find the optimum wing geometry, this paper further considers a trade-off 
between flight efficiency and structural integrity. In this trade-off study, a multi-objective optimization 
is formulated and performed, targeting for both minimizing the drag to improve flight efficiency and 
reducing the gust-induced wing bending moment to enhance the structural integrity. Finally, this paper 
explores the minimum control cost for different targets of combined flight efficiency and structural 
integrity. This paper provides not only an efficient way to search for the desired wing planform geometry 
at a given flight condition but also insights of the required control effort that is necessary to maintain 
the wing geometry.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

The improvement of aircraft operation efficiency needs to be 
considered over the whole flight plan, instead of a single point in 
the flight envelope, since the flight condition varies in a flight mis-
sion. Therefore, it is natural to employ morphing wing designs so 
that the aircraft can be made adaptive to different flight conditions 
and missions. At the advent of recent development in advanced 
composites as well as sensor and actuator technologies, in-flight 
adaptive wing/airfoil morphing is now becoming a tangible goal. 
Traditionally, discrete control surfaces were used to re-distribute 
the aerodynamic loads along the wing span during the flight, to 
tailor the aircraft performance. However, the deflection of discrete 
control surfaces may increase the aerodynamic drag. A practical al-
ternative is to introduce conformal wing/airfoil shape changes for 
the aerodynamic load control. In addition, the flexibility associated 
with the morphing wing structures may be pro-actively utilized 
to improve the aircraft performance. The active aeroelastic tailor-
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ing techniques will allow aircraft designers to take advantage of 
the wing flexibility to create the desired wing load distribution 
according to the mission requirement, to improve overall aircraft 
operating efficiency and performance, without using the traditional 
discrete control surfaces. The utilization of these concepts is predi-
cated upon the optimum shape being known and a control system 
which can produce this wing shape.

The question of determining the optimum wing shape has been 
studied in depth. Recently, Chen et al. [1] investigated the effects 
of various trim conditions on the aerodynamic shape optimization 
of the Common Research Model wing-body-tail configuration. Us-
ing a free-form distribution for the wing geometry coupled with 
a RANS solver for the aerodynamics, they studied the impact of a 
trim constraint on the optimization process. Through a series of 
optimizations utilizing the trim conditions at varying points in the 
design process, they concluded that considering the trim during 
optimization yields the best performance. In a similar study, Lyu 
and Martins [2] performed an aerodynamic optimization of the 
trailing edge of a wing. Their optimization showed the drag re-
ductions (including induced drag, friction drag and wave drag of a 
full aircraft planform) with shape optimization of either the entire 
wing or just the trailing edge. Previtali et al. [3] used a concurrent 
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Nomenclature

a Centrifugal acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

B Body-fixed frame
bc semi-chord of airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
BF , BM , Ng Influence matrices for aerodynamic force, moment, 

and gravity force
B̄F , B̄B Components of influence matrix for u
B f

u , Bm
u Influence matrices in control loads

CF F , CF B , CB F , CB B Components of generalized damping matrix
CG B Rotation matrix from body frame to global frame
C1, C2, C3, C4 Optimization constraints
d distance of midchord in front of beam reference 

axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Emax , Rmax Maximum endurance and range of aircraft . . . . s, m
Fa , Ma Aerodynamic force and moment on wing 

sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N, N·m
Fpt

u , Mpt
u Complete points loads due to u

F1, F2, F3 Matrices for inflow states differential equitation
G Global or inertial frame
g Gravitational acceleration vector . . . . . . . . . . . . . . . . . m/s2

J Jacobian matrices relating independent and dependent 
variables

KF F Generalized stiffness matrix
L, D , W Total lift, drag, and weight of aircraft . . . . . . . . . . . . . . . N
lmc , mmc , dmc Aerodynamic lift, moment, and drag in local 

aerodynamic frame about midchord . . . . . . . . . . . . . . N/m
MF F , MF B , MB F , MB B Components of generalized inertia ma-

trix
M g

y Gust-induced aerodynamic bending moment . . . . N·m
PB Inertial rigid-body position of aircraft . . . . . . . . . . . . . . . m

Q Tuning matrix for control cost
q Trim or design variables
R Radius of turning path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
RF , RB Flexible and rigid-body components of generalized 

load vector
Ru

F , Ru
B Generalized loads due to u

rF , rB Residuals of equilibrium equation
T Thrust force vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
Uc Control cost
U∞ Flight speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
u Distributed wing shaping control force vector
w Wing node-fixed local frame
w g Gust velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
ẏ, ż, z̈, α̇, α̈ Airfoil motion variables in local aerodynamic 

frame
αB Aircraft pitching angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
αg Gust-induced angle of attack. . . . . . . . . . . . . . . . . . . . . . . rad
β Rigid-body velocity of aircraft . . . . . . . . . . . . . . m/s, rad/s
ε Complete strain vector of aircraft
ε0 Initial strain of aircraft
εe (εx , κx , κy , κz) Elemental strain vector and its components
ζ Quaternion
η Magnitude of mode shapes
λ Inflow states for unsteady aerodynamics
λ0 Induced velocity due to wake . . . . . . . . . . . . . . . . . . . . . m/s
ξ1, ξ2 Tuning parameters in multi-objective optimizations
ρ∞ Air density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

� Linear mode shape of aircraft
ϕB Aircraft bank angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
approach to optimize a 3-D morphing wing. In this work, rolling 
moment, weight, and maneuver aerodynamic drag were consid-
ered at different flight speeds, where the wing performances were 
compared with those of a conventional wing. Taking the optimiza-
tion a step further requires the development of a realistic system 
capable of producing the optimum shape that is suitable for a 
given flight condition. This concept was highlighted in Nguyen et 
al. [4], where the design of the Variable Camber Continuous Trail-
ing Edge Flap (VCCTEF) is introduced. In addition, an optimization 
is performed to determine the deflection angles required through-
out the trailing edge to improve the flight performance.

Many wing morphing technologies have been developed over 
the years as the materials and fabrication methodologies have 
advanced. Molinari et al. [5] presented wind tunnel and flight 
tests of a morphing wing built by using compliant mechanisms 
and piezoelectric actuators. In Nguyen et al. [6] the principles of 
aerodynamic shape optimization and morphing wing structures 
were explored. The optimization process led to the development 
of the VCCTEF, which was a novel concept for improving aircraft 
performance by drag reduction. A further study of the VCCTEF 
wing model was conducted by Nguyen and Ting [7], where they 
performed a flutter analysis of the mission-adaptive wing. The 
methodology included a vortex-lattice aerodynamic model coupled 
with a finite element structural dynamic model. Urnes et al. [8]
provided an updated review of the development, design, and test-
ing of the VCCTEF project. Under the support of the U.S. Air Force 
Research Laboratory, FlexSys, Inc. developed the Mission Adaptive 
Compliant Wing (MAC-Wing) to test and evaluate its performance. 
The adaptive trailing edge flap technology was combined with a 
natural laminar flow airfoil and tested on the Scaled Composites 
White Knight aircraft. The testing suggested fuel saving, weight 
reduction, and improved control authority [9,10]. In an effort to 
move from an adaptable trailing edge to a completely adaptable 
wing structure, the Cellular Composite Active Twist Wing was de-
signed and tested in Cramer et al. [11], showing promising re-
sults. A scaled airplane model was built, which incorporated ac-
tive twist wings and was compared to a similar rigid model with 
traditional control surfaces in wind tunnel tests. The active twist 
wings showed similar capabilities for symmetric and asymmetric 
movements as well as added benefits in the stall mitigation. An 
overview of the process used to design the composite lattice-based 
cellular structures for active wing shaping was presented in Jenett 
et al. [12], in which they presented a detailed approach for design-
ing a low density and highly compliant structure.

Although both the optimization process and the morphing tech-
nology have improved, there is a need for a complete system, 
in which a robust controller may actuate and maintain the wing 
members to the desired optimum shape throughout the flight en-
velope. The controller may also perform the required maneuver 
and vibration control during the flight. Most current optimiza-
tion schemes utilize a CFD aerodynamic model coupled with dis-
crete structural points as design variables. These methods produce 
promising results. However, when optimization is performed over 
an entire flight plan, this approach could be very time-consuming. 
Moreover, these methods consider the detailed wing shape rather 
than the wing bending and torsions associated with highly flexible, 
large aspect-ratio wing members. Recent developments of morph-
ing technologies such as the Cellular Composite Active Twist Wing 
take advantage of the flexible nature of high-aspect-ratio wings. 
Therefore, it is natural to develop an optimization scheme that 
mainly considers the bending and torsion of the high-aspect-ratio 
wings of high-altitude, long-endurance aircraft. This concept was 
implemented in Su et al. [13], which utilized a modal based op-
timization approach in determining the best feasible wing shape 
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Fig. 1. Global and body frames defining the rigid-body motion of aircraft and flexible lifting-surface frames within body frame.
of a highly flexible aircraft at any given flight scenario. However, a 
significant disadvantage was that the distributed control loads re-
quired to actuate and maintain the optimum wing geometry were 
not defined. Therefore, in this paper, the study will be advanced 
to develop a wing optimum shape determination algorithm with 
defined distributed control loads. The optimization process will 
generate the specific wing shape needed to guarantee the opti-
mum performance and structural integrity over the entire flight 
envelope of an aircraft.

2. Theoretical formulation

A coupled aeroelastic and flight dynamic formulation for highly 
flexible aircraft has been developed by Su and Cesnik [14–16]. 
A brief introduction of the formulation is presented here, followed 
by the modal-based optimization approach for searching the most 
efficient wing geometries with the optimum distributed control 
scheme along the wing span under different flight conditions.

2.1. Equations of motion

As shown in Fig. 1, a global or inertial frame G is defined. 
A body frame B(t) is used to describe the vehicle position and 
orientation, with Bx pointing to the right and B y pointing to 
the nose. The location of B is arbitrary, as long as it is in the 
symmetric plane of the aircraft. By taking advantage of their ge-
ometry, highly flexible wings are modeled as slender beams that 
may exhibit large deformations during operation. Within the body 
frame, a local beam frame w is designated at each node along 
the reference line, see Fig. 1, which is used to define the nodal 
position and orientation of the flexible members. In Su and Ces-
nik [17], a nonlinear beam element has been introduced to model 
the geometrically-nonlinear deformation of slender beams. In this 
formulation, strain deformations (curvatures) of the beam refer-
ence line are considered as the independent variables to describe 
the beam deformation. Assume the curvatures are constant within 
one element, the elemental strain vector is denoted as

εT
e = {

εx κx κy κz
}

(1)

where εx is the extensional strain, κx , κy , and κz are the twist cur-
vature of the beam reference line, out-of-plane bending curvature, 
and in-plane bending curvature, respectively. The total strain vec-
tor of the complete aircraft ε is obtained by assembling the global 
strain vector. Transverse shear strains are not explicitly included 
in this equation. However, shear strain effects are included in the 
constitutive relation [18]. Complex geometrically nonlinear defor-
mations can be represented by such a constant-strain distribution 
over each element.

By following the Principle of Virtual Work extended to dynamic 
systems, the coupled aeroelastic and flight dynamic behavior of 
highly flexible aircraft in free flight can be described by the fol-
lowing equations,

MF F (ε)ε̈ + MF B(ε)β̇ + CF F (ε̇,ε,β)ε̇ + CF B(ε̇,ε,β)β + KF F ε

= RF (ε̈, ε̇,ε, β̇,β,λ, ζ ,T,u)

MB F (ε)ε̈ + MB B(ε)β̇ + CB F (ε̇,ε,β)ε̇ + CB B(ε̇,ε,β)β

= RB(ε̈, ε̇,ε, β̇,β,λ, ζ ,T,u) (2)

ζ̇ = −1

2
�ζ (β)ζ

ṖB = [
CG B(ζ ) 0

]
β

λ̇ = F1

{
ε̈
β̇

}
+ F2

{
ε̇
β

}
+ F3λ

where the components of the generalized inertia M, damping C, 
and stiffness K matrices can be found in [14,15]. In general, loads 
of aerodynamics, gravity, engine thrust, and control input are con-
sidered in the generalized load vector of aircraft, which is given 
as{

RF

RB

}
=
{

KF F ε0

0

}
+
[

JT
pε

JT
pb

]
BF Fa +

[
JT
θε

JT
θb

]
BM Ma

+
[

JT
hε

JT
hb

]
Ngg +

[
JT

pε

JT
pb

]
T +

[
B̄F

B̄B

]
u

(3)

which involves the contributions from the initial strain ε0, aerody-
namic loads Fa and Ma , gravitational fields g, thrust force T, and 
additional control input u. BF , BM , and Ng are the influence ma-
trices for aerodynamic lift, moment, and gravity force, respectively, 
which come from the numerical integration of virtual work done 
by the external loads along the wing span, see Su and Cesnik [14]. 
Influence matrices of the control input, B̄F and B̄B , are dependent 
on the specific control mechanism and are yet to be determined 
in this paper. Finally, all the Jacobian matrices J in Eq. (3) can be 
obtained from the nonlinear strain-position kinematic relationship 
discussed in [19,17]. These Jacobian matrices link the dependent 
variables (the nodal positions and orientations of beam elements), 
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Fig. 2. Airfoil coordinate systems and velocity components.

Fig. 3. Point control forces on a beam element (u1: extension force; u2: torsion 
coupling; u3: out-of-plane bending coupling; and u4: in-plane bending coupling).

to the independent variables (the element strain and rigid-body 
motion). It should be noted that both elastic member deformations 
and rigid-body motions are included when deriving the internal 
and external virtual work in Su and Cesnik [14]. Therefore, the 
elastic (ε) and rigid-body (β) degrees of freedom are naturally 
coupled. This coupling is also highlighted in Eq. (2), where the 
elastic deformations and the rigid-body motions are solved from 
the same set of equations.

In Eq. (3), aerodynamic loads are calculated by using the 2-D 
finite-state inflow theory [20]. At a given station along the wing, 
the aerodynamic lift, moment, and drag are given by

lmc = πρ∞b2
c (−z̈ + ẏα̇ − dα̈)

+2πρ∞bc ẏ2
[
− ż

ẏ
+
(

1

2
bc − d

)
α̇

ẏ
− λ0

ẏ

]
(4)

mmc = πρ∞b2
c

(
−1

8
b2

c α̈ − ẏ ż − dẏα̇ − ẏλ0

)

dmc = −2πρ∞bc

(
ż2 + d2α̇2 + λ2

0 + 2dżα̇ + 2żλ0 + 2dα̇λ0

)
where the inflow states λ are governed by the inflow equation in 
Eq. (2). The different velocity components referred by Eq. (4) can 
be seen in Fig. 2. Note that the vortex-induced drag is not included 
in this study, as it becomes less important for the high-aspect-ratio 
wings studied in this paper.
2.2. Definition of general distributed control load

In the current study, a distributed control scheme is developed 
by assuming every element along the main wing can be actuated. 
Fig. 3 shows a generic wing element with applied point force (u1) 
and force couples (ru2, ru3 and ru4) on both ends for actuation. 
The combined loads may independently actuate the extensive, tor-
sional, out-of-plane bending, and in-plane bending deformations of 
the element. These elemental loads are written as(

Fpt
u

)
e
= {−u1 0 0 0 0 0 u1 0 0

}T

(5)(
Mpt

u

)
e
= {−ru2 −ru3 −ru4 0 0 0 ru2 ru3 ru4

}T

where the coefficient r represents the arms of force couples u1, u2, 
and u3. Without loss of generality, r is set to be 1 throughout the 
studies. Note that there are three nodes defined on each beam ele-
ment [17]. As no loads are applied at the mid-node of the element 
for shaping actuation, the middle three entries of both load vec-
tors (Fpt

u )e and (Mpt
u )e are all zeros. Eq. (5) is further written into 

the matrix form of

(
Fpt

u

)
e
=

⎡
⎢⎢⎣

−1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦

T ⎧⎪⎪⎨
⎪⎪⎩

u1
u2
u3
u4

⎫⎪⎪⎬
⎪⎪⎭

=
(

B f
u

)
e
ue

(6)

(
Mpt

u

)
e
=

⎡
⎢⎢⎣

0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1

⎤
⎥⎥⎦

T ⎧⎪⎪⎨
⎪⎪⎩

u1
u2
u3
u4

⎫⎪⎪⎬
⎪⎪⎭

= (
Bm

u

)
eue

Accordingly, the complete control loads are obtained by properly 
sizing and assembling the elemental matrices in Eq. (6), leading to

Fpt
u = B f

u u

Mpt
u = Bm

u u
(7)

where Fpt
u and Mpt

u , as nodal loads along the wing span, can be 
eventually transformed into the generalized control load by using 
the Jacobians [17], resulting in
{

Ru
F

Ru
B

}
=
[

JT
pε

JT
pb

]
B f

u u +
[

JT
θε

JT
θb

]
Bm

u u =
[

B̄F

B̄B

]
u (8)

which participated in Eq. (3) as part of the generalized load for full 
flexible aircraft.

2.3. Distributed control loads

Under a given flight condition, U∞ and ρ∞ , the optimum wing 
geometry and control inputs should be determined to satisfy the 
trim of aircraft. Usually, trim variables of an airplane are

qtrim = {
αB ϕB T u

}T (9)

where αB is the body pitching angle, ϕB is the bank angle, T is 
the thrust, and u is the control input as defined in Sec. 2.2. With 
the rigid-body rotation angles, αB and/or ϕB , one can prescribe the 
quaternions and thus the rigid-body velocity as follows,
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ζ = ζ (αB ,ϕB)

β = β(U∞, ζ )
(10)

For a steady coordinated turn, the centrifugal acceleration is given 
by

a = U 2∞
R

(11)

where R is the radius of the turn path. The transformation matrix 
between global and body frames is determined by the pitching an-
gle αB and the bank angle ϕB or the quaternion ζ as

CBG =
(

CG B(ζ )
)T =

(
CG B(αB ,ϕB)

)T
(12)

Therefore, the body components of the rigid-body acceleration is 
given by

β̇ =
{

CBG
{

a 0 0
}T

03×1

}
(13)

Hence, the original aeroelastic and flight dynamic equations de-
scribed in Eq. (2) can be simplified by considering only the pre-
scribed rigid-body motion in terms of ζ , β , and β̇ . In addition, 
the transient vibration terms of the aircraft, damping effects, and 
unsteady aerodynamic contributions are all removed from Eq. (2), 
yielding

MF B(ε)β̇ + KF F ε − RF (αB ,ϕB ,T,u,ε) = 0

MB B(ε)β̇ − RB(αB ,ϕB ,T,u,ε) = 0
(14)

where the generalized loads are explicitly determined by the trim 
variables, as well as the wing shape. Even though the flight 
speed U∞ , air density ρ∞ , and centrifugal acceleration a do im-
pact the aerodynamic load, they are omitted from Eq. (14), as they 
are prescribed flight conditions and do not belong to the trim vari-
ables. It is clear that the second equation in Eq. (14) is essentially 
the trim condition that an aircraft in steady flight should satisfy, 
while the first is the elastic equilibrium for flexible aircraft.

In Su et al. [13], a modal based approach was presented to 
search for the optimum wing geometry without using the tradi-
tional control surfaces. This approach is still utilized here. Assume 
a wing geometry satisfying the trim condition be represented by a 
truncated series of linear mode shapes, i.e.,

ε̄(s, t) =
N∑

i=1

�i(s)ηi(t) (15)

where �i are the linear mode shapes of the flexible aircraft and ηi

the corresponding magnitude of the modes. This approach allows 
one to use a finite number of flexible modes to search for the op-
timum wing shape for minimum drag while maintaining the trim 
and elastic equilibrium of the aircraft. Replace ε in Eq. (14) by ε̄, 
one can further write the residual equations as

rF = MF B(ε̄)β̇ + KF F ε̄ − RF (αB ,ϕB ,T,u, η1, η2, · · · , ηN)

rB = MB B(ε̄)β̇ − RB(αB ,ϕB ,T,u, η1, η2, · · · , ηN)
(16)

where the control force u is explicitly solved by enforcing rF = 0
during each iteration of the optimization process. In combination 
with Eq. (3), the control force is then given by

u = B̄−1
F

(
MF B(ε̄)β̇ + KF F ε̄

−KF F ε0 − JT
pεBF Fa − JT

θεBM Ma − JT
hεNgg − JT

pεT
) (17)

This is the fully distributed control load along the wing span to 
actuate and maintain the desired wing geometry from the opti-
mization solution.
Fig. 4. A 1-cosine vertical gust velocity profile with unit peak velocity.

2.4. Multi-objective design optimization

From the previous discussion, it is clear that the design vari-
ables for the optimum wing shape may include

q = {
αB ϕB T η1 η2 · · · ηN

}T (18)

given that the optimum wing shape is represented by a finite num-
ber of linear modes. Since the minimum drag is associated with 
many important flight performance metrics, the first design objec-
tive of this study is to minimize the drag, that is

min
q

D = D(q) (19)

At the same time, the corresponding control cost should be min-
imized to avoid the situation where an excessive control effort 
outweighs the benefit gain from the minimum drag. The control 
cost is defined as

Uc(q) = uT (q)Qu(q) (20)

where Q is a user-defined weighting matrix to tune the control 
cost.

Highly flexible aircraft with slender wings are often suscepti-
ble to the perturbation of wind gust. To account for this situation 
and ensure aircraft structural integrity, one can define another de-
sign objective function to minimize the wing aerodynamic bending 
moment induced by gust perturbations. In doing so, a discrete gust 
model, shown in Fig. 4, is used to calculate the aerodynamic mo-
ment generated at the wing root. The gust width is 25 times the 
chord length of the main wing. The gust velocity can be expressed 
as [21]

w g = w0

2

(
1 − cos

2πx

25c

)
(21)

where w0 is the nominal maximum gust speed, and c is the aver-
age chord length of the main wing. To further simplify the prob-
lem, a method similar to Tang and Dowell [22] is used here, where 
the gust strength at a given time is assumed as constant along the 
wing span. This simplification leads to an effective angle of attack 
induced by the wind gust as

αg = w g

U∞
(22)

with the maximum being (αg)max = w0/U∞ . This additional angle 
of attack will be added to Eq. (4) to calculate the gust-induced 
aerodynamic loads. With the actual wing shape frozen, i.e., same 
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Fig. 5. Geometrical data of the baseline highly flexible aircraft.

as with no gust, the gust-induced flatwise bending moment M g
y

can be assessed at the wing root following Eq. (3), which is then 
to be minimized to alleviate the gust perturbation.

Finally, the optimum solution must also satisfy additional con-
straints. The first is the trim of aircraft, that is

C1 : rB = 0 (23)

In addition, some variables should be constrained within their 
search limits, such as

C2 :

⎧⎪⎨
⎪⎩

max |κx| � κxlim

max
∣∣κy

∣∣� κy lim

max |κz| � κz lim

(24)

C3 :
{ |αB | � αlim

0 � T � T lim
(25)

and

C4 : 0 � ϕB � ϕlim (26)

To handle the proposed three design objectives, i.e., min D , 
min Uc , and min M g

y , can be a challenge. However, according to 
the needs for a specific flight scenario, one may choose to con-
strain one or two of them, while minimizing the remaining. The 
problem formulation and mathematical description will be given 
in the following numerical studies.

3. Numerical studies

In this section, a highly flexible aircraft model is considered 
for the numerical study. By following Su et al. [13], the vehi-
cle’s geometrical and physical properties are shown in Fig. 5 and
Table 1. The aircraft has a wingspan of 32 m and a total mass 
of 54.5 kg. Seven linear flexible modes are used for the optimiza-
tion with mode 1 being the first flat bending mode, mode 3 being 
the second flat bending mode, and mode 5 being the first torsion 
mode. A full list and description of the linear flexible modes was 
also provided in Su et al. [13].

3.1. Minimum drag – steady level flight

Following the approach proposed in Su et al. [13], the initial 
condition for design optimization is determined at first, which is 
achieved by trimming the aircraft using the control surfaces illus-
trated in Fig. 5 for a steady level flight at 20,000 m with a constant 
speed of 25 m/s. The resulting trimmed wing shape is shown in 
Fig. 6 and trim variables are used as the baseline to optimize for 
the minimum drag as described by Eq. (19), without applying any 
additional constraints. This process is then repeated, using the pre-
vious interim optimum solution as the initial condition for a new 
Table 1
Properties of the baseline highly flexible aircraft.

Parameter Value Unit

Wings
Span 16 m
Chord 1 m
Incidence angle 2 deg
Sweep angle 0 deg
Dihedral angle 0 deg
Beam reference axis (from LE) 50 % chord
Cross-sectional c.g. (from LE) 50 % chord
Mass per span 0.75 kg·m
Rotational moment of inertia 0.1 kg·m
Torsional rigidity 1.00 × 104 N·m2

Flat bending rigidity 2.00 × 104 N·m2

Edge bending rigidity 4.00 × 106 N·m2

Tails
Span of horizontal tail 2.5 m
Span of vertical tail 1.6 m
Chord of tails 0.5 m
Incidence of horizontal tail −3 deg
Incidence of vertical tail 0 deg
Sweep of vertical tail 10 deg
Sweep of horizontal tail 0 deg
Dihedral of horizontal tail 0 deg
Beam reference axis (from LE) 50 % chord
Cross-sectional c.g. (from LE) 50 % chord
Mass per span 0.8 kg·m
Rotational moment of inertia 0.01 kg·m
Torsional rigidity 1.00 × 104 N·m2

Flat bending rigidity 2.00 × 104 N·m2

Edge bending rigidity 4.00 × 106 N·m2

Complete aircraft
Mass 54.5 kg

Fig. 6. Baseline trimmed geometry for steady level flight at 25 m/s.

Table 2
Minimum drag optimization results with only trim constraint.

Parameter Baseline Optimum

Body Angle of Attack, deg 1.26 2.62
Drag, N 59.28 51.3937
Mode 1 1.5654 0.1329
Mode 3 −0.0164 −0.0347
Mode 5 0.0071 −0.0027
Mode 7 0.0004 −0.0004
Mode 8 0.0005 −0.0013
Mode 10 −0.0002 −0.0002
Mode 12 −0.0014 −0.0013
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Fig. 7. Optimum geometry for steady level flight at 25 m/s.

optimization process, until the optimum solution converges within 
a tolerance. During the optimization, only the symmetric modes 
are included. The converged solution is compared to the baseline 
in Table 2. The resulting optimum wing shape is shown in Fig. 7. 
On optimization, the optimum modal magnitudes in Table 2 results 
in a different wing bending and torsion distribution (see Fig. 8), 
which in turn changes the lift and drag distributions in the span-
wise direction (see Fig. 9). In fact, the resulting optimum geometry 
yields a decrease in drag from 59.28 N to 51.39 N, which repre-
sents a 13.3% reduction. Table 2 also highlights the magnitude of 
each mode, showing that the first mode is dominant and the third 
mode is also significant. The higher order modes are largely un-
used. The optimum wing shape is mostly flat, which is consistent 
with the results reported in Su et al. [13]. In comparison between 
Figs. 6 and 7, one can observe that an amount of local lift force 
is generated in the lateral direction due to the wing bending de-
formation, which eventually is canceled on both wings. The flat 
optimum shape does not waste such force components since the 
aerodynamic force is basically in the vertical direction. Note that 
the total lift is identical in the two configurations. Thus, the ini-
tial shape should generate more wing sectional lift, which in turn 
creates more sectional drag according to Eq. (4). Therefore, the 
drag less with the optimum wing shape. Since this shape differs 
so much from the baseline “U” shape shown in Fig. 6, it is intu-
itive that a significant amount of control effort would be required 
to maintain the shape. More detailed discussions and quantitative 
presentations about the control cost will be provided in the follow-
ing studies with a balance between flight performance and control 
cost.
Fig. 9. Comparison of sectional drag distribution.

Table 3
Minimum drag vs. control cost.

ξ1 Drag, N Control cost

0 53.9938 3.84 × 104

0.1 53.8530 4.02 × 104

0.2 53.8271 4.04 × 104

0.3 53.7952 4.11 × 104

0.4 53.7630 4.22 × 104

0.5 53.7014 4.53 × 104

0.6 53.5738 5.49 × 104

0.7 53.4550 6.97 × 104

0.8 53.2602 1.06 × 105

0.9 52.7555 2.92 × 105

0.92 52.5576 4.12 × 105

0.95 52.2053 7.32 × 105

0.99 51.4596 2.63 × 106

1 51.3411 3.40 × 106

3.2. Multi-objective optimization – drag and control cost

Multi-objective optimization is performed in this section to 
help understand the trade-off involved in improving the perfor-
mance and reducing the control cost. The control cost was defined 
previously in Eq. (20). An objective function is then defined to con-
sider the trade-off between the minimum drag and control cost as

min
q

f = ξ1 D + (1 − ξ1)Uc (27)

where 0 ≤ ξ1 ≤ 1. Varying the parameter ξ1 results in varying the 
trade between minimum drag and minimum control cost. For ex-
Fig. 8. Comparison of sectional bending (left) and twist (right) distributions.
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Fig. 10. Trade-off between minimum drag and control cost.

ample, when ξ1 = 1 the objective function becomes entirely min-
imum drag, while ξ1 = 0 becomes entirely minimum control cost. 
For this study, the tuning parameter is varied at an increment 
of 0.1. Additional cases are added for ξ1 = 0.92, 0.95, and 0.99, in 
order to better understand the sharp change in geometry from 0.9 
to 1. The results are presented in Table 3. As the parameter ξ1
increases from 0 to 1, the minimum drag decreases with an in-
creased control cost. This trend highlights the trade-off required 
between the minimum drag and the control cost. This trend can be 
seen graphically in Fig. 10. The optimum geometries of a few high-
lighted cases are presented in Fig. 11. The shape does not change 
dramatically between ξ1 = 0 and ξ1 = 0.6. After this point, the tip 
deflection starts to decrease more drastically. The shape transitions 
from a fairly deep “U” to the flat shape as seen in the minimum 
drag study in the previous section.

The out-of-plane bending moment required to actuate each el-
ement of the wing structure for a few highlighted values of ξ1 are 
shown in Fig. 12. This figure shows the required control effort at 
each wing segment to achieve the appropriate geometry resulting 
from the corresponding optimization. It can be seen that as the pa-
rameter ξ1 changes from 0 (minimum control cost) to 1 (minimum 
drag) the required bending moment in each element drastically 
increases, especially within the elements closer to the wing root. 
Fig. 12. Bending moment for each element of the wing for various values of ξ1.

This observation agrees well with the shapes seen in Fig. 11, the 
shape becomes much flatter compared to the trim state of the air-
craft, which indicates that a large bending moment is needed near 
the wing root to flatten the shape and thus reduce the drag.

3.3. Minimum drag with a constrained control cost

A constraint on the control cost can be used to ensure the op-
timum shape does not require excessive energy, while achieving 
drag reduction. This can be formulated as a constrained optimiza-
tion problem as follows,

min
q

D = D(q)

subject to
C1 : rB = 0
C5 : Uc � Uc lim

(28)

where Uc lim is a user-defined value to constrain the control cost. 
In this study, the limit is set at Uc lim = 7 × 104. This value cor-
responds to a control cost near the middle of the previous study. 
The resulting optimum solution is compared with the baseline in
Table 4. It can be seen that the drag reduces from 59.28 N to 
53.53 N, which is a 9.7% reduction. The resulting optimum geom-
etry can be seen in Fig. 13. The shape is consistent with the ones 
from the previous study as it falls between ξ1 = 0.6 and ξ1 = 0.9, 
Fig. 11. Optimum geometries with trade-off between minimum drag and control cost.
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Table 4
Minimum drag with control cost constraint.

Parameter Original Optimum

Angle of Attack, deg 1.26 2.95
Drag, N 59.28 53.53
Mode 1 1.5654 0.9962
Mode 3 −0.0164 −0.0215
Mode 5 0.0071 −0.0015
Mode 7 0.0004 −0.0002
Mode 8 0.0005 −0.0011
Mode 10 −0.0002 −0.0003
Mode 12 −0.0014 −0.0037

Fig. 13. Optimum geometry for steady level flight at 25 m/s with control cost con-
straint.

just as the control cost falls between those same weighting param-
eters.

3.4. Multi-objective optimization – minimum drag vs. gust load 
alleviation

The concept of gust alleviation discussed here is a passive way 
to improve the structural integrity of the aircraft under gust per-
turbation. The wind gust model and the approach for estimation 
of the gust-induced bending moment were given in Sec. 2.4. The 
gust velocity, w0, is set at 2.19 m/s, which leads to an induced 
angle of attack of 5 ◦ for the flight speed of 25 m/s. Some air-
craft missions may require this to be considered in addition to the 
flight performance requirements, such as drag reduction. In doing 
so, a different optimization is performed to better understand the 
potential trade-off between the flight efficiency and structural in-
tegrity by minimizing the drag and the gust-induced root bending 
moments. In this study, the optimization problem can be expressed 
as

min
q

f = ξ2 D + (1 − ξ2)M g
y (29)

where 0 ≤ ξ2 ≤ 1. The control constraint, C5, was again set at 
Uc lim = 7 × 104 to ensure the control cost is not too large. The 
parameter ξ2 is varied at an increment of 0.1. When ξ2 = 0 the op-
timization is entirely to find the minimum root moment, and when 
ξ2 = 1 the optimization is entirely to find the minimum drag. The 
results of this study can be seen in Table 5 and graphically in 
Fig. 14, which very clearly show the required trade-off between 
flight performance and structural integrity. As a smaller drag is 
achieved, the wing root aerodynamic bending moment increases 
and vice versa.

For a battery-powered, propeller-driven aircraft, the endurance 
and range are given by
Table 5
Minimum drag vs. gust-induced bending moment.

ξ2 Drag, N M g
y , N·m

0 55.6345 2.938 × 103

0.1 55.6115 2.938 × 103

0.2 55.6030 2.938 × 103

0.3 55.5731 2.939 × 103

0.4 55.5563 2.941 × 103

0.5 55.2553 2.959 × 103

0.6 54.1515 3.068 × 103

0.7 53.7545 3.131 × 103

0.8 53.6611 3.151 × 103

0.9 53.4783 3.219 × 103

1 53.4692 3.278 × 103

Fig. 14. Trade-off between minimum drag and gust-induced aerodynamic bending 
moment.

E =
√
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2
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√
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(
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)
R = η̄U∞

W

L

D

(
C̄0 − C̄1

) (30)

where flight speed U∞ is constant. Lift L equals weight W , both of 
which are time-invariant for a battery-powered aircraft under con-
stant atmospheric conditions. ρ∞ is the air density, S is the lifting 
surface area, and η̄ is the propulsion efficiency. C̄0 and C̄1 are ini-
tial and final battery capacities. In fact, Eq. (30) can be derived 
from the Breguet Equations for range and endurance of fuel-burn 
propeller-driven aircraft, with assumptions of linear battery capac-
ity discharge rate and constant aircraft weight. Nonetheless, it is 
clear that both endurance and range are inversely proportional to 
the drag D , with a constant lift at level flight. With this relation-
ship, one can further convert Fig. 14 into the trade-off between 
gust-induced root bending moment and flight endurance or range, 
see Fig. 15. Since aircraft power capacity and propulsion efficiency 
are not involved in the current study, Fig. 15 is plotted with non-
dimensional data, that is, all data are normalized with respect to 
the case when ξ2 = 0. From Fig. 15, it is easy to observe the gain 
on the maximum endurance or range, at the cost of an increased 
root-bending moment.

3.5. Multi-objective optimization – minimum control with constrained 
drag and bending moment

To understand the trade-offs between all three quantities, 
drag D , gust-induced root bending moment M g

y , and control 
cost Uc , a study is performed to balance the effects of all three. 
The root bending moment and the drag can be considered as addi-
tional constraints when performing an optimization in which the 
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Fig. 15. Flight endurance (or range) and gust-induced root bending moment.

control cost is to be minimized. The modified optimization prob-
lem is expressed as

min
q

Uc = Uc(q) (31)

subject to the following constraints

C6 : D � D lim

C7 : M g
y � M g

y lim

(32)

In the study, one may vary the constraints of both drag and gust-
induced root bending moment within a given range. With that, the 
minimum control cost is searched with different combinations of 
drag and bending moment constraints. Presented here are the re-
sults of a study in which the drag constraint is varied from 52 N 
to 62 N at an increment of 0.5 N, and the root bending moment 
constraint is varied from 2700 N·m to 3100 N·m at every 25 N·m. 
This study provides an aircraft designer a better understanding of 
the control cost required to fly an aircraft with specific constraints 
on the drag and root moment experienced due to gust. For illus-
tration, a grid of drag and root moment constraints are applied to 
generate the plot seen in Fig. 16. It can be seen that there is a 
region, where the target drag and gust-induced moment are both 
small, therefore no feasible optimum solutions of wing geometry, 
and thus the control cost, exist. This infeasible region is seen in the 
left corner of the figure. There is a clear border where the control 
cost is relatively high to limit the gust moment and achieve the re-
quired wing geometry. However, the control cost is reduced when 
Table 6
Optimum wing geometry for a range of speeds.

Speed, m/s
Baseline Optimum shape

Thrust, N Body AOA, deg Thrust, N Body AOA, deg

20 87.468 4.528 85.664 4.080
21 80.110 3.699 77.251 3.694
22 73.756 2.973 69.841 3.311
23 68.245 2.333 63.634 3.141
24 63.454 1.766 58.234 3.029
25 59.282 1.260 53.541 2.941
26 55.665 0.803 49.418 2.890
27 52.521 0.389 45.816 2.874
28 49.811 0.010 43.610 2.775

the constraints are relaxed, namely the points on the right side of 
the figure.

3.6. Level flight in a range of speed

In this section, the wing bending and torsion geometry of the 
flap-less aircraft is optimized in a range of flight speed from 20 to 
28 m/s, while the other sizing and geometry parameters (e.g., span 
and wing incidence angle) are not changed. Following the approach 
in Sec. 3.3, the optimization with a control cost constraint is car-
ried out. Each of these cases is treated as an individual steady level 
flight case, meaning only the symmetric modes are considered as 
design variables. The aircraft is again trimmed using the traditional 
control surfaces for each flight speed to have a point of compari-
son with the optimum solution as well as an initial set of design 
variables. The optimum shapes are compared with the trim condi-
tions for each case in Table 6. It can be seen that for each speed, 
the optimization produces a wing geometry that reduces the drag, 
thus the required thrust to maintain the trim. The size of the re-
duction varies with the speed range with a maximum reduction of 
12.7% occurring when the speed is 27 m/s and a minimum reduc-
tion of 2.1% when the speed is 20 m/s.

4. Conclusions

Determination of the optimum wing geometry, as well as the 
corresponding control loads of a highly flexible aircraft, was ex-
plored in this paper. Given the flexible nature of aircraft with 
high-aspect-ratio wings, a modal based approach was used in de-
termining the optimum wing bending and torsion geometry. The 
magnitudes of the modes were used as design variables in the 
optimization. Additionally, a distributed control actuation was for-
mulated by assuming that each element of the main wing can be 
Fig. 16. Minimum control cost with varying drag and root moment constraints (left: top view; right: angle view).
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actuated. This kind of modeling gave an insight into the forces 
and moments required to generate a specific wing geometry. The 
distributed force calculation was included in the optimization to 
determine each corresponding optimum wing geometry. In case 
only the trim requirement was considered in the optimization, 
the search for the optimum wing shape resulted in a flat wing 
platform, which required excessive control effort. Obviously, this 
excessive control cost to maintain the shape may outperform the 
reduction in drag. Therefore, the control cost was then included 
in the optimization problem formulation. A trade-off was then at-
tained between drag reduction and control cost. The optimization 
was also expanded to include gust alleviation as an objective func-
tion. This multi-objective function provided insights into the trade-
off between performance metrics of minimum drag and structural 
integrity. The control cost was also determined for different levels 
of flight efficiency and structural integrity, through a constrained 
optimization process. Aircraft designers may benefit from the study 
with a better understanding of the control cost required to fly an 
aircraft at a specific pairing of drag and root moment experienced 
due to gust.

It should be noted that the optimization was computed using 
the gradient-based optimizer fmincon in MATLAB, which can only 
produce a local minimum. Despite not being a global minimum, 
the results presented here were consistent and showed significant 
improvement over the baseline solutions.

The results presented here serve as the foundation for future 
works in developing the robust flight control algorithms to actuate 
and maintain the optimum wing geometry for any flight condition. 
It has been demonstrated that the optimum shape over a range 
of speeds appears to be a visually smooth transition. These results 
will be used along with linear parameter-varying modeling tech-
niques to develop a flight controller.
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