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This paper addresses the Input Covariance Constraint (ICC) control problem with guaranteed H∞
performance for continuous-time Linear Parameter-Varying (LPV) systems. The upper bound of the output 
covariance is minimized subject to the constraints on input covariance and H∞ output performance. 
This problem is an extension of the mixed H2/H∞ LPV control problem, in that the resulting gain-
scheduling controllers guarantee not only closed-loop system robustness in terms of H∞ norm bound 
but also output covariance performance over the entire scheduling parameter space. It can be shown 
that this problem can be efficiently solved by utilizing the convex optimization of Parameterized Linear 
Matrix Inequalities (PLMIs). The main contributions of this paper are to characterize the mixed ICC/H∞
LPV control problem using PLMIs and to develop the optimal state-feedback gain-scheduling controllers, 
while satisfying both input covariance and H∞ constraints. The effectiveness of the proposed control 
scheme is demonstrated through vibration suppression of a blended-wing-body airplane model.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

Linear Parameter-Varying (LPV) modeling and control have 
gained significant interest from the control community over the 
past two decades [1–4]. The main benefit of LPV control is that 
the varying nature of system dynamics can be captured by the LPV 
model with its linear system matrices dependent on scheduling 
parameter. LPV controllers can be designed with its gain sched-
uled based on scheduling parameters measured in real-time.

A systematic LPV modeling approach was proposed in our pre-
vious publication [5,6] for developing reduced-order LPV models 
for flexible aerospace structures. The sub-sequential LPV control 
design based on developed LPV models is presented in this arti-
cle. The mainstream approach of LPV gain-scheduling control de-
sign is to formulate control synthesis conditions in terms of Linear 
Matrix Inequalities (LMIs) or Parameterized Linear Matrix Inequal-
ities (PLMIs) [1,7,8]. Numerically tractable optimization methods, 
such as convex optimization, can then be applied to solve for 
feasible or optimal LPV gain-scheduling controllers. LPV control 
designs with guaranteed H2 and/or H∞ performance have been 
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intensively studied in the literature [9–12]. However, in practical 
aerospace structural control applications, control inputs are of-
ten hard-constrained and modeling error is unavoidable. Therefore, 
how to achieve optimal output performance when subject to con-
strained control input and bounded modeling error is a critical 
control design problem, but conventional LPV control design tech-
nique cannot handle such a design problem. Therefore, mixed In-
put Covariance Constraint (ICC) and H∞ LPV control is proposed in 
this paper to deal with this multi-objective optimal control prob-
lem.

As an extension of H2 control, the ICC control problem is to 
minimize the output covariance performance subject to the multi-
ple constraints on input covariance. The ICC control plays an espe-
cially important role for systems with hard constraints on control 
authority [13,14]. In practical applications, actuators are utilized 
to drive the mechanical systems to achieve desired output perfor-
mance, and these actuators typically have limited capacity. There-
fore, it is critical to incorporate these actuator constraints during 
control design, however, this has not been considered in the tradi-
tional LPV control formulation. In addition, the existing optimiza-
tion formulation for conventional LPV controller design often leads 
to high-gain controllers, due to the optima-seeking nature of the 
optimization process. These high-gain controllers would inevitably 
tend to drive the actuators beyond their physical limitations and 
could also degrade or even destabilize closed-loop systems [15]
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when the modeling error becomes significant. Furthermore, for 
multiple exogenous input scenarios, the problem of LPV control 
design to achieve the best possible performance is still an open 
research problem.

The dual of ICC problem is the Output Covariance Constraint 
(OCC) control problem, which is to minimize the control input 
covariance subject to the constraints on output covariance. Both 
ICC and OCC control problems for linear systems have been stud-
ied extensively in the past. For instance, a linear quadratic control 
problem minimizing control energy subject to output covariance 
constraints was first considered in Hsieh et al. [16]. In Zhu et 
al. [17] an algorithm with guaranteed convergence was proposed, 
in which the OCC problem was solved by optimally selecting the 
output weighting matrix and solving the Riccati equation itera-
tively. After the LMI technique was introduced, both ICC and OCC 
problems have subsequently been converted into the convex op-
timization problems with LMI constraints [18,19], and they were 
solved using convex optimization tools. Al-Jiboory et al. [19] uti-
lized the linear time-invariant (LTI) ICC control design approach to 
optimize the system performance, in terms of output covariance 
with given actuator constraints, for both state and output feedback 
cases. An application of the control synthesis LMI conditions can 
be found in Al-Jiboory et al. [18]. It should be emphasized that the 
OCC and ICC control problems mentioned above were all for LTI 
systems, and only a single H2 performance constraint was consid-
ered. In other words, there was no guaranteed robust performance 
for closed-loop systems when subject to modeling errors.

To meet multiple performance requirements, a mixed H2/H∞
LPV control strategy has been proposed with two separate per-
formance channels for H2 and H∞ performance specifications. 
Scherer et al. [20] formulated an H2/H∞ problem for LPV sys-
tems and provided the associated solution by solving the alge-
braic LMIs. In Scherer et al. [21] a solution to the output-feedback 
mixed H2/H∞ LPV control problem was presented. Apkarian et 
al. [22] developed a tractable and practical LMI formulation for the 
multi-objective LPV control problem using Linear Fractional Trans-
formation (LFT) representations. All these studies treat the mixed 
performance control problem without including control input and 
output performance constraints. Recently, White et al. [3,23] for-
mulated PLMI conditions to solve this multi-objective problem for 
polytopic discrete-time LPV systems, and provided a solution that 
guarantees L2 to L∞ gain and performance. Zhang et al. [24] de-
signed a multi-objective LPV controller for an electronic throttle, 
and showed that the multi-objective LPV controller is able to im-
prove closed-loop system performance over the baseline PID con-
troller.

The primary objective of this paper is to formulate the contin-
uous-time mixed ICC and H∞ control problem by utilizing PLMIs 
for the state-feedback case. To the best of authors’ knowledge, the 
gain-scheduling state-feedback robust ICC problem with guaran-
teed H∞ performance for continuous-time LPV systems has never 
been explored in the past. One of the great advantages of the pro-
posed approach is that it provides an effective way of designing 
a family of LPV controllers with varying gains, allowing to tune 
the controller gains for LPV systems, which is a capability of great 
practical significance. To illustrate the benefits of the proposed 
approach, a blended-wing-body airplane model is considered for 
vibration suppression. Although a full state-feedback controller has 
limited practical application, nonetheless it serves as a good basis 
for formulating the dynamic output feedback controllers.

The rest of paper is organized as follows. Section 2 formulates 
the mixed ICC and H∞ (or robust ICC) control problem, and Sec-
tion 3 provides LPV modeling of linear systems and introduces 
affine to multi-simplex transformation. Then, the control synthe-
sis conditions in terms of PLMIs are provided in Section 4, and the 
numerical simulations for the blended-wing-body model are con-
ducted in Section 5. The conclusions are in Section 6.

2. Problem formulation

Consider the following affine LPV systems,

�(θ) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) = A(θ(t))x(t) + B∞(θ(t))w∞(t)
+ B2(θ(t))w2(t) + Bu(θ(t))u(t)

z∞(t) = C∞(θ(t))x(t) + D∞(θ(t))w∞(t)

+ E∞(θ(t))u(t)

z2(t) = C2(θ(t))x(t)

(1)

where θ(t) = [
θ1(t), θ2(t), . . . , θq(t)

]T
denotes the scheduling pa-

rameter vector of q elements, x(t) ∈ Rnx denotes the state, w∞(t) ∈
Rnw∞ the H∞ disturbance input due to modeling error, w2(t) ∈
Rnw2 the H2 disturbance input, u(t) ∈ Rnu the control input, 
z∞(t) ∈ Rnz∞ the H∞ controlled output, and z2(t) ∈ Rnz2 the H2

performance output. All system matrices are assumed to have 
compatible dimensions and in affine parameter-dependent form. 
For example, A(θ) can be described by

A(θ(t)) = A0 +
q∑

i=1

Aiθi , (2)

where A0 and Ai , i = 1, 2, . . . , q, are constant matrices. It is as-
sumed that the scheduling parameters are measurable in real-time, 
and their magnitude and variational rate are bounded. Specifically, 
the scheduling parameter set is formulated as:

θ ∈ � = {
θ i ≤ θi(t) ≤ θ̄i,−νθi ≤ θ̇i(t) ≤ νθi

}
, (3)

where i ∈ [1, 2, ..., q]. In this paper, we propose the gain-scheduling 
state-feedback controllers of the form

u(t) = K (θ(t))x(t), (4)

where K (θ) is the parameter-dependent control gain matrix. Note 
that u(t) can be partitioned as u(t) = [

u1(t), u2(t), . . . , unu (t)
]T

. 
Then, substituting (4) into (1) yields the closed-loop LPV system 
described by

�cl(θ) :
⎧⎨
⎩

ẋ(t) = Acl(θ)x(t) + B∞(θ)w∞(t) + B2(θ)w2(t);
z∞(t) = Ccl,∞(θ)x(t) + D∞(θ)w∞(t)

z2(t) = C2(θ)x(t)

(5)

where Acl(θ) = A(θ) + Bu(θ)K (θ), Ccl,∞(θ) = C∞(θ) + E∞(θ)K (θ). 
Throughout this paper, we make use of the following standard def-
inition of L2 and L∞ norms on x(t) ∈ Rn for all t ≥ 0,

‖x‖2
2 :=

∞∫
0

xT (t)x(t)dt , ‖x‖2∞ := sup
t≥0

x(t)T x(t) .

2.1. System performance

It should be noted that there are two separate input and output 
pairs defined in (5), and they are specifically designated for assess-
ing the closed-loop LPV system performances, as shown in Fig. 1. 
The LPV system �(θ) is controlled by the gain-scheduling state-
feedback controller (4), to achieve best H2 performance while 
subject to H∞ performance requirements and control input con-
straints. Note that the interconnection of � in Fig. 1 is to capture 
the model uncertainties in �(θ). The definitions of H∞ and H2
performances are given below.
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Fig. 1. Closed-loop LPV system with state-feedback control and uncertainty block.

2.1.1. H∞ performance
The H∞ performance, defined from w∞(t) to z∞(t) with L2

input and L2 output, is utilized to assess the closed-loop sys-
tem robustness in the presence of model uncertainties. Mathe-
matically, let T∞(K (θ), s) := T w∞→z∞ (K (θ), s) denote the transfer 
function from w∞(t) to z∞(t), and ||T∞(K (θ), s)||∞ the H∞ norm 
of T∞(K (θ), s). Then, the H∞ performance for (w∞(t), z∞(t)) pair 
in (5) is defined as [25]

||T∞(K (θ), s)||∞ = ess sup
ω∈R

σ̄ [T∞(K (θ), jω)]

= sup
w∞,z∞∈L2,||w∞||2 	=0

||z∞(t)||2
||w∞(t)||2 . (6)

Physically, H∞ norm is related to the robust stability of a 
given system with modeling error. Based on the Small Gain 
Theorem [25], the closed-loop system satisfying the condition 
||T∞||∞ ≤ γ∞ is well-posed and internally stable for all uncer-
tainty satisfying the constrain ||�||∞ < 1/γ∞ , where � is system 
uncertain dynamics interconnected from z∞ to w∞ , see Fig. 1.

2.1.2. H2 performance
Let T2(K (θ), s) := T w2→z2 (K (θ), s) be the transfer function 

from w2(t) to z2(t), then the H2 norm of T2(K (θ), s) can be de-
fined by [20]

||T2(K (θ), s)||22
= sup

θ∈�

1
2π

∫ ∞
−∞ trace

[
T ∗

2 (K (θ), jω)T2(K (θ), jω)
]

dω

= sup
θ∈�

trace(C2(θ) P̄2(θ)C T
2 (θ)),

(7)

where P̄2(θ) is the controllability Gramian solving ˙̄P2(θ) +
Acl(θ) P̄2(θ) + P̄2(θ)Acl(θ)T + B2(θ)B2(θ)T = 0.

The H2 norm of a system has two interesting physical inter-
pretations both stochastically and deterministically. To be more 
specific, stochastically, H2 norm of a system denotes the trace of 
the output covariance matrix, or in other words, the summation of 
RMS-value of the system outputs to a white noise input; and deter-
ministically, H2 norm of a system denotes the square summation 
of L2 to L∞ gains of individual channels from exogenous distur-
bance inputs to system outputs. In vibration control, system H2
norm can be used as a measure of output magnitude (L∞ norm) 
due to energy limited (L2 norm) disturbance inputs.

Note that for LPV control case, ||T2(K (θ), s)||2 depends on vary-
ing scheduling parameter θ , leading to increased complexity due 
to unknown scheduling parameter trajectory. To reduce complex-
ity and keep optimization as a unified approach, the upper bound 
trace(W ) ≥ trace(C2(θ) P̄2(θ)C T

2 (θ)) for all θ satisfying (3) is min-
imized instead. W is an introduced auxiliary variable, which is a 
symmetric matrix with compatible dimensions with outputs. Using 
this objective function, the optimal control conditions with guaran-
teed H2 performance for all admissible scheduling parameter are 
derived, and then, the mixed ICC and H∞ control problem can be 
well formulated in the sequel.
2.2. Mixed ICC and H∞ control problem

The mixed ICC and H∞ control problem is to find a state-
feedback gain-scheduling controller (4) for the LPV system (1), 
while minimizing the upper bound of H2 performance cost

min
K (θ)

trace(W ) , (8)

such that: 1) the closed-loop system (5) is exponentially stable, 
and 2) the following constraints are satisfied,

||T∞(K (θ), s)||∞ ≤ γ∞ , (9)

Cov(uk(t)) ≤ Ūk,k = 1,2, . . . ,nu , (10)

where γ∞ > 0 is the given H∞-norm bound on system robustness, 
and Ūk the given bound on the control covariance Cov(uk(t)) for 
the kth control input uk(t) defined below,

Cov(uk(t)) =
⎡
⎣ 1

2π

∞∫
−∞

T ∗
u(K (θ), jω)Tu(K (θ), jω)dω

⎤
⎦ , (11)

and Tu(K (θ), s) := T w2→u(K (θ), s) denotes the transfer function 
from w2(t) to u(t) for the LPV system (5). Note that, for determin-
istic signal, covariance is defined in terms of time correlation [26].

As a result, the proposed mixed ICC and H∞ control prob-
lem has interesting interpretations in stochastic and deterministic 
perspectives. The stochastic interpretation assumes that the exoge-
nous input w2(t) is an uncorrelated zero-mean white noise with 
unit intensity. Then, the mixed ICC and H∞ control problem is 
to minimize the output covariance (or RMS-value) while satisfying 
multiple control input covariance constraints and H∞ robust per-
formance criterion. The control input covariance constraints can be 
considered as constraints on the variances of the control actuation. 
In other words, the proposed control provides the best output H2

performance with the given control H2 performance and robust 
H∞ constraints. On the other hand, the deterministic interpre-
tation assumes that the exogenous input w2(t) is an unknown 
disturbance that belongs to a bounded L2 set. Then, the mixed ICC 
and H∞ control problem is to minimize the square summation of 
L2 to L∞ gains from w2(t) to individual output channel z2,k(t)
for k = 1, 2, . . . , nz2, subject to the L2 to L∞ gain constraints (10)
on uk(t) for k = 1, 2, . . . , nu and the H∞ constraint (9). In other 
words, the proposed control problem is to minimize the weighted 
sum of the worst case peak values of performance output subject 
to the constraints on worst-case peak values of control inputs and 
the H∞ constraint. It should be noted that the L2-L∞ gain from 
w2(t) to z2(t) is defined in White et al. [23] as follows,

σ

⎡
⎣ 1

2π

∞∫
−∞

T ∗
2 (K (θ), jω)T2(K (θ), jω)dω

⎤
⎦

= sup
w2∈L2,z2∈L∞,||w2||2 	=0

||z2(t)||2∞
||w2(t)||22

(12)

where σ [·] denotes the maximum singular value operator.

3. Modeling scheduling parameters

The scheduling parameter vector considered in (1) is defined 
in an affine manifold, so we first need to map that into a multi-
simplex manifold for subsequent convex analysis. Following the 
procedure presented in Lacerda et al. [27] and Oliveira et al. [28], 
the original parameter domain can be converted into a convex 
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multi-simplex domain. Note that a multi-simplex domain is de-
fined as the Cartesian product of multiple unit-simplexes. Thus, the 
scheduling parameter θi(t) can be converted into the unit-simplex 
variable αi(t) using the following formula,

αi,1 = θi(t) − θ i

θ̄i − θ i

, αi,2 = 1 − αi,1 = θ̄i − θi(t)

θ̄i − θ i

, i = 1,2, . . . ,q.

(13)

As a result, we have αi = (αi,1, αi,2) ∈ Λi,2, where the two dimen-
sional unit-simplex Λi,2 for αi is defined as

Λi,2 := {αi ∈ R2 :
2∑

k=1

αi,k = 1,αi,k ≥ 0} .

Hence, the unit-simplex variable αi ∈ i,2 is created. Similarly, the 
time derivative of the scheduling parameter can also be converted 
into a unit-simplex variable by utilizing the following condition,

α̇i,1(t) + α̇i,2(t) = 0 . (14)

Hence, the rates of convex parameters are bounded as follows,
−νθi

θ̄i − θ i

≤ α̇i,k ≤ νθi

θ̄i − θ i

, i = 1,2, . . . ,q; k = 1,2 . (15)

Note that the time derivative of parameter αi lies in the space 
modeled by the convex combination of the columns of the matrix 
Hi ∈ R2×2 given by

Hi =
⎡
⎣ − νθi

θ̄i−θ i
,

νθi
θ̄i−θ iνθi

θ̄i−θ i
, − νθi

θ̄i−θ i

⎤
⎦ , i = 1,2, . . . ,q , (16)

and α̇i can be established using a unit-simplex of dimension 2 as

�i,2 := {φi ∈ R2 : φi =
2∑

k=1

ηi,k Hk
i , ηi ∈ Λi,2}, i = 1,2, . . . ,q ,

(17)

where ηi = (ηi,1, ηi,2) and Hk
i denotes the kth column of ma-

trix Hi . Therefore, the unit-simplex variable α̇i ∈ �i,2 is created. 
Furthermore, the scheduling parameters (θ, θ̇ ) with given bounds 
can then be converted into multi-simplex domain from Cartesian 
product of multiple unit-simplexes as follows,

(α, α̇) ∈  × � :=
q∏

i=1

i,2 ×
q∏

i=1

�i,2 .

By utilizing the scheduling parameter transformation presented 
above, the LPV system �(θ) described in (1), which is an affine 
function of parameter θ , can now be transformed into an LPV sys-
tem representation �(α) that is a function of α in multi-simplex 
domain. For simplicity, we assume that �(α) takes the same form 
as �(θ) in that all the system matrices are now functions of α. 
Subsequently, the LPV controller design, to be presented in the 
next section, will be based on the convex scheduling parameter α. 
However, in actual control implementation, the designed LPV con-
troller in multi-simplex α domain will need to be mapped back to 
the controller in affine θ domain [28].

4. Controller synthesis PLMIs

This section provides the synthesis PLMI conditions for the pro-
posed mixed ICC and H∞ control problem. To make it numerically 
more tractable, the upper bound of the H2 norm, instead of ac-
tual H2 norm, is minimized. The next theorem contains the main 
result of this paper.
Theorem 1. Given the input covariance constraints Ūk, k = 1, 2, · · · , nu, 
and a positive scalar γ∞ , if there exist continuously differentiable 
parameter-dependent matrix 0 < P2(α) = P T

2 (α) ∈ Rnx×nx , 0 <
P∞(α) = P T∞(α) ∈ Rnx×nx , G(α) ∈ Rnx×nx , Z(α) ∈ Rnu×nx , small 
scalars ε2 > 0 and ε∞ > 0, and matrix W = W T ∈ Rnz2 ×nz2 that mini-
mize the following cost function with a given scaling matrix Q > 0,

min trace(Q W ) (18)

subject to the following inequalities (∗ denotes symmetric terms),⎡
⎣ �11 ∗ ∗

�12 −ε2(G(α) + G(α)T ) ∗
B2(α)T 0nw×nw −Inw

⎤
⎦ < 0 , (19)

[
W C2(α)G(α)

∗ G(α) + G(α)T − P2(α)

]
> 0 , (20)

[
Ūk �k Z(α)

∗ G(α) + G(α)T − P2(α)

]
> 0, k = 1,2, · · · ,nu , (21)

⎡
⎢⎢⎣

�∞1 ∗ ∗ ∗
�∞2 −ε∞(G(α) + G(α)T ) ∗ ∗
�∞3 ε∞�∞3 −Inz ∗

B∞(α)T 0nw×nx D∞(α)T −γ 2∞Inw

⎤
⎥⎥⎦ < 0 ,

(22)

where �11 = A(α)G(α) + Bu(α)Z(α) +(A(α)G(α) + Bu(α)Z(α))T −
∂ P2(α)

∂α α̇, �12 = P2(α) −G(α) +ε2(A(α)G(α) + Bu(α)Z(α))T , and �k

is input channel selection matrix for control input of interest, and �∞1 =
A(α)G(α) + Bu(α)Z(α) + (A(α)G(α) + Bu(α)Z(α))T − ∂ P∞(α)

∂α α̇, 
�∞2 = P∞(α) − G(α) + ε∞(A(α)G(α) + Bu(α)Z(α))T , and �∞3 =
C∞(α)G(α) + E∞(α)Z(α). Then, the gain-scheduling controller

u(t) = K (α)x(t) , K (α) = Z(α)G−1(α) (23)

exponentially stabilizes the LPV system �(α) for any (α, α̇) ∈  × �

with a guaranteed H∞ performance bound γ∞ . In addition, the ICC cost 
is bounded by

trace(W ) > trace
{

C2(α)P2(α)C2(α)T
}

, (24)

and the constraint (10) is satisfied.

Proof. For closed-loop LPV system (5), assume Acl(α) is stable for 
any pair (α, α̇) ∈  ×�, then there is a continuously differentiable 
parameter-dependent positive-definite matrix P̄2(α) = P̄2(α)T > 0, 
such that

˙̄P2(α) + Acl(α) P̄2(α) + P̄2(α)Acl(α)T + B2(α)B2(α)T = 0 (25)

where P̄2(α) is the controllability Gramian of the LPV system. In 
other words, there is a parameter-dependent positive-definite ma-
trix P2(α) > P̄2(α) satisfying the following inequality

Ṗ2(α) + Acl(α)P2(α) + P2(α)Acl(α)T + B2(α)B2(α)T < 0 . (26)

To decouple Acl(α) and P2(α) in (26), we utilize Finsler’s Lemma
[29] to obtain the following,

Γ (α) + X(α)V (α) + V T (α)X T (α) < 0 , (27)

where

Γ (α) =
⎡
⎣ Ṗ2(α) P2(α) 0

P2(α) 0 0
0 0 I

⎤
⎦ , X(α) =

⎡
⎣ G T (α) 0

R T (α) 0
0 I

⎤
⎦

V (α) =
[

AT
cl(α) −I 0
BT 0 −I

]
,

2
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and G(α) and R(α) are introduced as slack variables. To main-
tain convex parametrization property, R(α) is chosen to be R(α) =
ε2G(α), where ε2 > 0 is a scalar that is used to provide an extra 
degree-of-freedom when performing the line search and to reduce 
conservativeness. Letting Z(α) = K (α)G(α) yields (19).

Now, consider (20). Pre- and post-multiplying (20) by [I, C2]
and [I, C2]T renders

[
I C2

][
W C2(α)G(α)

∗ G(α) + G(α)T − P2(α)

][
I

C T
2

]
> 0 (28)

from which we obtain

W > C2(α)P2(α)C2(α)T , (29)

hence (29) leads to (24). Since

C2(α)P2(α)C2(α)T > C2(α) P̄2(α)C2(α)T ,

as a result, minimizing trace(Q W ) implies minimizing the upper 
bound of the weighted ICC cost.

Similarly, pre- and post-multiplying (21) by [I, �k K (α)] and 
[I, �k K (α)]T to obtain

[
I �k K (α)

][
Ūk �k Z(α)

∗ G(α) + G(α)T − P2(α)

][
I

(�k K (α))T

]

> 0 , (30)

which yields

Ūk > �k K (α)P (α)K (α)T �T
k , k = 1,2, · · · ,nu .

This implies that the selected control input covariance is upper 
bounded by Ūk .

Now, for H∞ performance inequality (22), we consider the fol-
lowing transformation matrix

T (α) =
⎡
⎣ I Acl(α) 0 0

0 Ccl,∞(α) I 0
0 0 0 I

⎤
⎦ .

Pre- and post-multiplying (22) by T (α) and T (α)T leads to 
the H∞ performance criterion based upon the well-known Real 
Bounded Lemma [11] that the H∞ norm of the closed-loop system 
is bounded by γ∞ . This can be easily verified by plugging in search 
variables and operating matrix multiplication. �
Remark 1. For each given set of small positive scalar variables ε2
and ε∞ , the minimization leads to a sub-optimal solution. Fixing 
both scalar variables would lead to conservativeness, however, the 
line search of scalar variables can reduce conservativeness signifi-
cantly. Note that constraining P∞ = P2 for multi-objective control 
design, as commonly found in the literature, could lead to large 
conservativeness. The optimization process can be repeated for 
a set of gridded scalar values to minimize trace(Q W ). The line 
search process may burden the computational load, but with cur-
rent advanced computational capacity, this should not be an issue.

The formulated PLMIs are equivalent to infinite dimensions of 
LMIs, and the recent robust synthesis framework provides rigorous 
method to handle PLMIs [8,28,30]. In this research, the matrix co-
efficient check relaxation approach [28] has been utilized to solve 
the developed PLMIs, especially in multi-simplex domain. The al-
gebraic operation for PLMIs can be a challenge, but ROLMIP [31]
has been one of the more effective parsers available to specifically 
handle these PLMIs. This package is based on MATLAB and works 
jointly with parser YALMIP [32] and solver SeDuMi [33]. In this 
paper, the optimization problem is solved by utilizing these tools.
Fig. 2. Schematic diagram of blended-wing-body airplane.

5. Numerical example: blended-wing-body airplane model

To demonstrate that the proposed robust ICC controller is able 
to achieve control design objectives, the LPV modeling and control 
of a Blended-Wing-Body (BWB) airplane is considered. The longi-
tudinal dynamics of BWB aero-elastic models were found to be 
varying with flight speeds in Su and Cesnik [6], therefore in this 
study the flight speed is considered as the only scheduling param-
eter θ . The objective of this study is to find a gain-scheduling LPV 
state-feedback controller to effectively suppress the vibration of 
BWB airplane wing. The system performance defined in Section 2
can be interpreted in physical terms, where H∞ performance is 
related to the robustness to modeling error and H2 performance 
is associated with the ability to suppress excessive wing vibration.

Fig. 2 shows a schematic configuration of the BWB airplane. In 
order to study aero-elastic and structural behavior utilizing finite 
element analysis, the main body is gridded into 6 beam elements 
and each wing is gridded into 4 beams. The control surfaces are 
located at the inner 3 elements of each wing, and they are labeled 
as input 1 to input 6. The H2 performance outputs are 3 nodal 
displacements at each wing element in z-direction, hence there 
are 24 nodal displacements in total. For example, outputs 1 and 12 
are the nodal displacements at the right wing root and wing tip, 
respectively.

A general approach in developing an affine LPV model for 
an aero-elastic structure system can be described as follows: 
1) A nonlinear aero-elastic model can be derived for a selected 
range of flight speeds [6]; 2) The nonlinear model is then lin-
earized over gridded flight speeds to obtain a set of Linear Time 
Invariant (LTI) full-order models (FOMs); 3) A coordinate transfor-
mation is conducted to transfer the FOMs into modal coordinates; 
4) Modal alignment and order-reduction [5] are performed to align 
modes for all LTI models and only the most significant modes over 
entire flight envelope are kept; 5) Linear interpolation over the 
aligned reduced-order models is operated to obtain the LPV model 
in affine form, as described in Eqn. (2).

The interpolation of aligned modes captures the variation of 
system dynamics as function of flight speed. It is important to note 
that if the models are not aligned, then a direct interpolation of 
system matrices will induce large modeling error [5]. In case of 
highly nonlinear behavior over a range of flight speeds, linear in-
terpolation may need to be performed over multiple sub-regions 
to reduce modeling error, leading to the needs for switching LPV 
control design, which is a subject of our future research.

In this study, the selected range of scheduling parameter θ

or flight speed is [110, 130] m/s, and a bundle of reduced-order 
LTI models are derived at varying flight speeds with an incre-
ment of 0.5 m/s to capture model variation. Six most dominant 
modes were chosen in the reduced-order LTI models, as marked 
by M1–M6 in Fig. 3. Physical meaning of each mode is described 
in Table 1. Note that all the bending/torsion coupling effects come 
from the backswept of the wing, and the wing structural rigid-
ity itself has no inherent bending/torsion coupling. From Fig. 3, we 
can see that the (open-loop) eigenvalues vary with flight speed θ , 



T. He et al. / Aerospace Science and Technology 81 (2018) 88–98 93
Table 1
Mode description in reduced-order model.

Mode ID Rigid-body component Flexible component Note

M1 Plunging and pitching First symmetric out-of-plane bending Bending/torsion coupling
M2 Plunging and pitching Second symmetric out-of-plane bending Bending/torsion coupling
M3 Plunging and pitching First symmetric in-plane bending Bending/torsion coupling
M4 Roll Second anti-symmetric out-of-plane bending Bending/torsion coupling
M5 – First anti-symmetric in-plane bending Bending/torsion coupling
M6 – – Aerodynamic dominant mode
Fig. 3. Root loci of open-loop system. (For interpretation of the colors in the fig-
ure(s), the reader is referred to the web version of this article.)

and mode M1 becomes unstable when θ = 115 m/s. The evolv-
ing directions of six modes associated with increasing flight speed 
are illustrated by the dashed arrow. The LPV model is obtained 
by linearly interpolating the first and last model, as shown in the 
close-up view of Fig. 3, where the solid line shows the linear 
interpolation of the eigenvalues, and the crosses denote the ac-
tual eigenvalue trajectory. Note that the interpolation error will be 
viewed as modeling error and handled by H∞ channel when for-
mulating the robust ICC LPV control problem. Similarly, all other 
system matrices are also obtained by following the same linear in-
terpolation process.

�(θ) :
⎡
⎣ ẋ(t)

z∞(t)
z2(t)

⎤
⎦

=

⎡
⎢⎢⎣

Ap(θ(t)) B p(θ(t)) B p(θ(t)) B p(θ(t))[
C p(θ(t))

0

] [
D p(θ(t))

0

]
0

[
D p(θ(t))

I

]

C p(θ(t)) 0 D p(θ(t)) D p(θ(t))

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

x(t)
w∞(t)
w2(t)
u(t)

⎤
⎥⎥⎦ (31)

We study a scenario where the BWB airplane is subject to a 
sharp-edge gust disturbance, which then induces a constant shift 
angle on all control surfaces, more specifically we assume w2 =
w∞ = 0.005 rad ≈ 0.28◦ . A gain-scheduling controller is designed 
to robustly suppress the bending displacement of the wing in the 
presence of gust disturbance. In this study, the hard constraints 
on flap deflection angles are imposed for two reasons: 1) available 
control authority is physically limited; 2) control inputs can not be 
too large in order to ensure the actuated dynamics are still within 
the linear range.
Fig. 4. Scheduling parameter (flight speed) trajectory.

The H2 outputs of interest are bending displacements, while 
the H∞ outputs include bending displacements and control inputs. 
Thus, by following the procedures described above, the LPV system 
description can be derived as in (31). The weighting matrix Q is 
chosen to be an identity, that is, all outputs are weighted equally. 
The scheduling parameter is chosen as a biased sinusoidal func-
tion, θ(t) = 110 + 20 sin(t/20) m/s, as shown in Fig. 4. Therefore, 
within the time interval of [0, 20π ] second, the scheduling param-
eter is bounded as 110 m/s ≤ θ ≤ 130 m/s, and its rate bounded as 
−1 m/s2 ≤ θ̇ ≤ 1 m/s2. In general, the scheduling parameter trajec-
tory should satisfy the boundary conditions for both θ and θ̇ , and 
be at least piece-wise differentiable. It is commonly accepted that 
the variation of the scheduling parameters must be ‘slow’ com-
pared to the system dynamics, because designing an LPV controller 
for fast-varying scheduling parameters is a challenge [34].

5.1. Constraints and performance trade-off

In the mixed ICC and H∞ (or robust ICC) LPV control problem, 
both control input constraints and robustness requirement would 
significantly impact the optimal solution to the PLMIs. Hence, a 
trade-off study is conducted to better understand the characteris-
tics of LPV models. Fig. 5 shows the complete trade-off between 
the control effort Ū , the robustness levels γ∞ , and the output 
performance trace(W ). For a given robustness level, the trade-
off contour illustrates that larger control input constraint leads to 
smaller output covariance, hence better H2 performance for the 
closed-loop system. In addition, with small control effort, output 
performance will be degraded, resulting in a large output covari-
ance. An increase in control effort leads to notable improvement 
on system H2 performance with wider range of admissible ro-
bustness levels. This demonstrates that larger control input can 
effectively compensate for the robustness constraints.

Furthermore, based on the Small Gain Theorem [25], the 
closed-loop system satisfying the condition ||T∞||∞ ≤ γ∞ is well-
posed and internally stable for all uncertainty satisfying ||�||∞ <

1/γ∞ , where � can be considered as an interconnection from z∞
to w∞ , as was shown in Fig. 1. In Fig. 5, with a fixed Ū , it is obvi-
ous that with more stringent requirement on robust performance, 
i.e. smaller γ∞ , the output performance degrades with increase in 
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Fig. 5. Trade-off between control limit Ū and trace(W) at different robustness con-
ditions.

trace(W ), leading to worsen H2 performance. Note that, while γ∞
decreases incrementally, trace(W ) increases or H2 performance 
degrades much drastically. This can be explained by the reciprocal 
relation between uncertainty � and γ∞ .

The trend at higher or lower robustness level reveals an impor-
tant implication for controller design. At lower robustness level, for 
instance γ∞ = 2, the H2 performance remains almost unchanged 
when Ū > 0.01. This indicates that the robust H∞ performance 
requirement is not the dominant factor for control design and the 
H2 performance can be achieved with a relatively small control 
effort. However, at higher robustness level, for instance γ∞ = 0.5, 
the H∞ performance becomes critical for control design. As a re-
sult, in order to achieve a specific H2 performance, more control 
effort is required. It is also observed that the achievable H2 per-
formance degrades with increase in robustness level. Based on the 
above-mentioned trade-offs, the constraints for the control design 
are chosen to be Ū = 0.02 and γ∞ = 1, which ensure a good 
robustness margin to handle modeling error while balancing be-
tween H2 performance and control effort.

5.2. Time domain simulation results

Given the range of θ and θ̇ , the control input constraints, and 
the robustness level, the LPV model of BWB airplane is simulated 
when it is subjected to a sharp-edged gust disturbance for 5 sec-
onds. Figs. 6 and 7 show the wing root (output 1) and wing tip 
(output 12) bending displacement of the right wing for open-loop 
case, and as can be seen the results are unstable. Therefore, a 
state-feedback LPV controller in the form of Eqn. (4) is designed to 
stabilize wing elements and suppress the bending displacement.

Using Theorem 1, a state-feedback LPV controller can be design 
with scheduled control gain matrix of dimension 6 × 12, mapping 
12 states to 6 control inputs. Note that the LPV model is devel-
oped in the modal coordinate, the measured or observed states 
in original coordinate need to be transformed to the modal co-
ordinate. In practical implementation, scheduling parameter (flight 
speed) will be online measured in each sampling time, and control 
inputs of altering flap angles can be calculated from corresponding 
controller gain matrix and measured or observed states.

To demonstrate the effect of control input constraints and ro-
bustness levels to H2 performance, multiple simulations are per-
formed for comparison. When robustness level γ∞ = 1 is fixed, 
each control input is identically constrained by various upper 
bounds Ū . Figs. 8 and 9 show the bending displacement at wing 
root and wing tip for Ū = 0.01, 0.02, 0.04. As can be seen, dur-
ing the gust disturbance, the outputs are converged and bounded. 
In addition, with larger control inputs, the output responses have 
Fig. 6. Bending displacement at wing root.

Fig. 7. Bending displacement at wing tip.

Fig. 8. Wing root bending under different Ū .

smaller overshoot and faster convergent rate, indicating that H2
output performance are improved. As shown in Figs. 10–15, the 
control inputs 1–6 are increased by more than twice when up-
per bounds become doubled. This comparison indicates that the 
selection of Ū = 0.02 offers a good balance between the perfor-
mance and the control effort, which produces an upper bound of 
u = 0.14 rad ≈ 8◦ .

All 6 inputs are compared to show how the control law al-
locates 6 independent inputs to suppress airplane wing displace-
ments. It can be observed that inputs 1 and 3 are distributed by 
similar control authority. The equal distribution of control author-
ity also happens on control inputs 2 and 4, control inputs 5 and 6.

When Ū = 0.02 is fixed, the robustness level γ∞ is varied to 
study its influence on output performance. As shown in Figs. 16
and 17, the bending displacement at wing root and wing tip are 
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Fig. 9. Wing tip bending under different Ū .

Fig. 10. Control input 1 under different Ū .

Fig. 11. Control input 2 under different Ū .

improved when γ∞ increases from 0.5 to 1. However, the re-
sponses remain almost unchanged when γ∞ increases from 1 to 2. 
This phenomenon matches well with the earlier trade-off study 
shown in Fig. 5. Figs. 18–23 show the control inputs when the 
robustness level is greater than 1, as can be seen that γ∞ is no 
longer the dominant factor for output performance.

After Ū is chosen, LPV controller is designed and applied to 
actual gridded LTI models to validate its feasibility. Fig. 24 shows 
the root loci of the closed-loop system with varying flight speed. 
As shown, the proposed LPV controller stabilizes the gridded LTI 
models subject to input constraints, while minimizing the out-
put H2 performance. However, in an effort to reduce control en-
ergy, some modes are kept unchanged by proposed controller. 
Fig. 12. Control input 3 under different Ū .

Fig. 13. Control input 4 under different Ū .

Fig. 14. Control input 5 under different Ū .

Comparing Figs. 3 and 24, the modes (M1, M2, M4), dominating 
z-directional bending motion, have been significantly shifted, while 
other modes (M3, M5, M6) are kept unchanged. In addition, Fig. 25
shows the ICC cost or H2 norm of the closed-loop system with 
LPV controller applied to interpolated LPV system and actual grid-
ded LTI models, respectively. Their magnitudes are very close and 
upper bounded by trace(W ). When combining with Fig. 24, Fig. 25
effectively validates that the proposed interpolation of LTI models 
and LPV controller design is feasible for vibration control of BWB 
airplane.
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Fig. 15. Control input 6 under different Ū .

Fig. 16. Wing root bending under different γ∞ .

Fig. 17. Wing tip bending under different γ∞ .

6. Conclusion

The mixed ICC and H∞ control problem was proposed and the 
associated synthesis PLMI conditions were developed for design-
ing the optimal controllers via convex optimization. The mixed ICC 
and H∞ controller minimizes H2 output covariance performance 
subject to multiple constraints on the control input and robust 
H∞ performance requirements. The proposed LPV control design 
scheme was applied to the BWB airplane model for vibration sup-
pression. A comprehensive design trade-offs were studied, includ-
ing the input covariance, output covariance, and robustness. The 
trade-offs provided an insight into how these constraints influence 
the closed-loop system performance. Simulations were conducted 
Fig. 18. Control input 1 under different γ∞ .

Fig. 19. Control input 2 under different γ∞ .

Fig. 20. Control input 3 under different γ∞ .

for different control bounds, and the results demonstrated that 
the proposed LPV controller was able to exponentially stabilize the 
closed-loop system, while enhancing the output performance with 
faster convergence and reduced oscillation. It was shown that for 
a given H∞ norm bound, the output performance improves as the 
available control effort increases, and for a given control effort, the 
system performance improves as the H∞ norm bound is reduced. 
Furthermore, the proposed approach would provide a family of LPV 
controllers with varying control gains that could be tailored for 
LPV control systems to achieve optimal performance.
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Fig. 21. Control input 4 under different γ∞ .

Fig. 22. Control input 5 under different γ∞ .

Fig. 23. Control input 6 under different γ∞ .
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