
Aerospace Science and Technology 84 (2019) 895–903
Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Smooth-switching LPV control for vibration suppression of a flexible 

airplane wing

Tianyi He a, Guoming G. Zhu a,∗, Sean S.-M. Swei b, Weihua Su c

a Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48823, United States of America
b Intelligent Systems Division, NASA Ames Research Center, Moffett Field, CA, 94035, United States of America
c Department of Aerospace Engineering and Mechanics, University of Alabama, Tuscaloosa, AL, 35487, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 September 2018
Received in revised form 15 November 2018
Accepted 16 November 2018
Available online 22 November 2018

In this paper, active vibration suppression of a Blended-Wing-Body flexible airplane wing is studied 
by utilizing a smooth-switching linear parameter-varying (LPV) dynamic output-feedback control. For 
the reduced-order LPV models, developed for each divided flight envelop subregion, a family of 
mixed Input Covariance Constraint and H∞ LPV controllers are designed to robustly suppress the 
wing bending displacement using hard-constrained control surfaces, while achieving smooth-switching 
between adjacent controllers. The proposed LPV controllers are developed by minimizing a combination 
of weighted H2 output performance and smoothness index, subject to a set of Parametric Linear Matrix 
Inequalities derived from stability and performance conditions. In addition, the weighting coefficient 
in the cost function is tuned to balance between H2 performance and switching smoothness by 
iteratively solving convex optimization problems. Simulation results demonstrate that simultaneous 
smooth-switching and improved performance can be achieved by the proposed LPV control.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

With the advantages of high aerodynamic and fuel efficiency, 
light and flexible airplane wing design is considered as a promis-
ing candidate for next-generation commercial aircraft as well as 
emerging air vehicle concept. However, vehicle flexibility often re-
sults in strong coupling between structural modes and rigid body 
dynamics, which poses a great challenge for modeling and flight 
control. In our previous work, a systematic framework of linear 
parameter-varying (LPV) modeling and control for active vibration 
suppression has been proposed and applied to a Blended-Wing-
Body (BWB) flexible airplane wing [1,2]. The LPV model is able to 
capture the variations of coupled modes at different flight speeds 
and depicts varying input–output relationship between flap de-
flection angles (control surfaces) and wing bending displacements 
(controlled outputs). A mixed Input Covariance Constraint (ICC [3]) 
and H∞ state-feedback LPV control technique [4] was used to sup-
press bending displacements of the flexible wing by adapting flap 
deflection angles, where control input constraints are handled by 
ICC constraints and the modeling errors are dealt with by H∞
constraints. Non-switching LPV state-feedback control was utilized 
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in the previous study [5], and this paper extends to the smooth-
switching LPV dynamic output-feedback (DOF) control to reduce 
the design conservativeness and make the LPV control practical 
with DOF control. Note that two significant contributions are made 
and they are the smooth-switching LPV control and extending the 
state feedback control to DOF control.

The current LPV modeling framework is often established in 
modal coordinates, hence for practical feedback implementation, 
the modal states need to be mapped back from their modal co-
ordinates to the original physical coordinates. Accessing mapped 
states for state-feedback design is complex and requires extensive 
computational effort. However, these can be avoided in DOF con-
trol framework. Moreover, in practice the output measurements 
(bending displacements) are much easier to access with available 
sensors.

Switching LPV control utilizing multiple parameter-dependent 
Lyapunov functions (PDLFs) [6] was proposed to reduce conser-
vativeness, leading to improved closed-loop performance when 
compared to the non-switching LPV control derived from a sin-
gle Lyapunov function. Given partitioned subregions of scheduling 
parameters, multiple PDLFs are utilized to derive a family of Para-
metric Linear Matrix Inequalities (PLMIs) based on specific perfor-
mance criteria and switching stability conditions. Gain-scheduling 
controllers are determined by minimizing the convex objective 
function subject to these formulated PLMIs over all subregions 
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simultaneously. Many engineering applications of switching LPV 
control have demonstrated system performance improvement over 
non-switching LPV control [6–9] due to reduced design conserva-
tiveness. However, an abrupt change in control and response over 
the switching surface can be observed, and this un-smooth tran-
sient response can be attributed to abrupt changes in controller 
gains during switching. This is because the closed-loop system per-
formance is optimized at each subregion during conventional con-
trol design, and the smooth transition between adjacent controllers 
are not considered. The extrema-seeking system performance at 
each subregion without considering switching performance often 
leads to high-gain controllers, hence resulting in an un-smooth 
switching between these high-gain controllers. This can be easily 
validated by examining the control gain differences between two 
neighboring subregions over the switching surface.

In literature, only a few publications are available in address-
ing ways to reduce the abrupt jumps, and the smooth-switching 
LPV control design is still considered an open problem. Chen [10]
considered the hysteresis switching state-feedback LPV control and 
conducted linear interpolation of controller variables on switching 
surfaces to achieve smooth-switching during switch-in and switch-
out on the overlapping region. However, this method cannot quan-
titatively evaluate switching smoothness and only a relative sta-
bility is achieved on the overlapping subregion. Hanifzadegan and 
Nagamune [11] followed the idea of linear interpolation of con-
troller matrices on switching surfaces, introduced a measure of 
smoothness index and imposed constraints on controller matrix 
derivative to compensate for the drawbacks found in Chen [10]. 
The design of stabilizing controllers was formulated into a non-
convex optimization problem, and an iterative descent algorithm 
was then applied to find local LPV controller for each individual 
subregion. Their approach relies heavily on iterative computations 
to solve multi-objective non-convex problems. Moreover, the intro-
duced smoothness index lacks physical meaning and the smooth-
ness constraints on controller matrices and their rates are selected 
through trial and error. In addition, the interpolation of controller 
matrices cannot guarantee the H∞ robust performance on the 
overlapped region.

In this paper, a convex optimization problem is formulated to 
simultaneously design smooth-switching LPV DOF controllers over 
divided subregions. Instead of using linear interpolation, a numeri-
cally tractable smoothness index is introduced in the optimization 
cost function. Here the smoothness index is defined by taking the 
normed difference of controller variable matrices between any two 
switching surfaces. By means of minimizing this smoothness index, 
it can be demonstrated that sharp changes in states and outputs 
can be significantly reduced at the cost of degraded system per-
formance. In other words, there exists a trade-off relationship be-
tween system performance and switching smoothness, and hence 
a tunable weighting parameter is adopted in the cost function. 
By tuning the weighting parameter, an optimal trade-off can be 
reached, leading to a smooth-switching LPV controller with accept-
able system performance.

A smooth-switching mixed ICC/H∞ LPV control is developed in 
this study and applied to active vibration suppression of a BWB 
flexible airplane wing, and is able to demonstrate improved H2
performance with guaranteed H∞ robust performance and subject 
to ICC hard-constrains on control inputs. The main contributions of 
this paper are: 1) formulating a weighted cost function that con-
sists of system performance and switching smoothness index, with 
a tunable parameter to balance the two; 2) providing PLMIs for 
switching ICC/H∞ LPV DOF control design; 3) applying smooth-
switching LPV control to vibration suppression of the BWB flexible 
wing. The simulation results validate that the proposed method 
is capable of balancing switching smoothness and system perfor-
mance. Furthermore, the tunable parameter also provides an extra 
Fig. 1. Schematic layout of BWB airplane configuration.

degree of freedom for tuning control gain, which is critical for 
practical applications.

This paper is organized as follows. Section 2 introduces the LPV 
modeling of the BWB airplane wing and specifies the associated 
system performance requirements. Section 3 provides synthesis 
conditions for smooth-switching LPV control design. Simulation re-
sults and associated discussions are provided in Section 4. Finally, 
conclusions are drawn in Section 5.

2. LPV model of the BWB airplane wing

2.1. LPV modeling

In this section, we consider the LPV modeling of BWB flexible 
wing, see Fig. 1 for a schematic illustration. Assume that the BWB 
airplane is flying at a fixed altitude but with varying flight speed. 
The main body of BWB is gridded into six beam elements and each 
wing is gridded into four beam elements. The inner three elements 
at each wing are selected as control surfaces, labeled as U1–U6 in 
Fig. 1, and wing bending displacements are to be suppressed by ac-
tivating the control surfaces. In order to modulate the vibrational 
behaviors of entire airplane wings, a total of 24 bending displace-
ments are selected as system outputs. For example, outputs 1 and 
12 are the nodal displacements at the right wing root and right 
wing tip in Fig. 1.

The LPV modeling procedure can be described as follows: 
1) a bundle of LTI full-order models (FOMs) are derived by lineariz-
ing nonlinear aero-elastic model at each gridded flight speed [2]; 
2) FOMs are then transformed into modal coordinates and all sys-
tem modes are properly aligned to track mode variations from 
one flight speed to the next; 3) model-reduction is conducted to 
keep the most significant modes over the entire gridded flight en-
velop [1]; 4) linear interpolation over the aligned reduced-order 
models to attain the affine LPV model. The interpolation of aligned 
modes is able to capture the variation of system’s coupled aerody-
namic mode with varying flight speed, which cannot be achieved 
by direct interpolation of LTI system matrices [1].

In this study, the scheduling parameter is chosen to be the air-
plane flight speed, and it ranges from 110 to 130 m/s. A bundle of 
reduced-order LTI models are derived at varying flight speeds and 
at an increment of 0.5 m/s to capture model variation. Six domi-
nant modes are kept in the reduced-order LTI models, as marked 
by M1–M6 in Fig. 2. Physical meanings of these modes are summa-
rized in Table 1. Note that all the bending/torsion coupling effects 
come from the backswept of the wing, and the wing structural 
rigidity itself has no inherent bending/torsion coupling. The vibra-
tion modes stay stable when flight speed is below 115 m/s, and 
mode M1 becomes unstable beyond 115 m/s as shown in Fig. 2.

The affine LPV model is obtained by linearly interpolating the 
first and last eigenvalues of each mode. As shown in the close-up 
view of Fig. 2, the solid line shows the linear interpolation of the 
eigenvalues, where crosses denote the loci of actual eigenvalues as 
function of flight speed. As a result, in the interpolated affine LPV 
model, system damping coefficient is approximated while system 
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Table 1
Mode description in reduced-order model.

Mode ID Rigid-body component Flexible component Note

M1 Plunging and pitching First symmetric out-of-plane bending Bending/torsion coupling
M2 Plunging and pitching Second symmetric out-of-plane bending Bending/torsion coupling
M3 Plunging and pitching First symmetric in-plane bending Bending/torsion coupling
M4 Roll Second anti-symmetric out-of-plane bending Bending/torsion coupling
M5 – First anti-symmetric in-plane bending Bending/torsion coupling
M6 – – Aerodynamic dominant mode
Fig. 2. Root loci of open-loop system with varying flight speed. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Three-subregion partition for scheduling parameter.

stability remains unchanged over the entire flight envelope. Simi-
larly, all other system matrices are also obtained by following the 
same linear interpolation process. The resulted affine LPV model 
consists of 12 states (6 modes), 6 control inputs (control surfaces 
deflection angles) and 24 performance outputs (wing bending dis-
placements).

There are two main control design goals. One is to robustly sta-
bilize the closed-loop system under bounded modeling error and 
the other is to suppress wing bending displacements, excited by 
the gust disturbance, using control surfaces on the wing. As a re-
sult, two independent H∞ and H2 input channels are used along 
with two independent H∞ and H2 output channels for the sys-
tem described in Eqn. (1) and Fig. 4, where modeling error is 
modeled as system disturbance input w∞ excited by the system 
output z∞ through uncertainty � and the closed-loop robust sta-
bility is achieved by satisfying the desired H∞ performance; the 
gust disturbance is treated as disturbance input w2 with associ-
ated H2 performance output z2 to be optimized for suppressing 
bending displacement z2 caused by the gust disturbance. In addi-
tion, ICC constraints are imposed on control inputs or deflection 
angles of control surfaces, so that they are hard-constrained to op-
erate within their limits. In order to apply switching LPV control, 
the switching LPV model is developed by dividing the scheduling 
parameter range into multiple overlapping subregions, as shown in 
Fig. 3. In the next subsection, a generic LPV model with H∞ and 
H2 channels will be considered and the associated system perfor-
mances defined.
Fig. 4. Switching multi-objective LPV control scheme.

2.2. Affine LPV system with multiple regions

Consider the LPV system �(θ) with H∞ and H2 channels,

ẋp(t) = A
(
θ(t)

)
xp(t) + B1

(
θ(t)

)
w∞(t) + B2

(
θ(t)

)
w2(t)

+Bu
(
θ(t)

)
u(t)

z∞(t) = C1
(
θ(t)

)
xp(t) + D1

(
θ(t)

)
w∞(t) + D2

(
θ(t)

)
u(t)

z2(t) = C2
(
θ(t)

)
xp(t)

y(t) = C y
(
θ(t)

)
xp(t) + D y w∞(t)

(1)

where θ(t) denotes the scheduling parameter, xp(t) the model 
state, u(t) the control input, and y(t) the measured bending dis-
placements. In the H∞ channel, w∞(t) denotes the exogenous 
input, which includes system disturbance, sensor noise, etc., while 
z∞(t) denotes the H∞ controlled output. In the H2 channel, w2(t)
denotes the disturbance input, such as gust disturbance, and z2(t)
the H2 controlled output or wing bending displacements. All sys-
tem matrices are in affine parameter-dependent form; for example,

A(θ(t)) = A0 +
q∑

i=1

Aiθi(t), θ = [θ1, θ2, ..., θq], (2)

where q is the dimension of scheduling parameter. The schedul-
ing parameter is assumed to be measurable in real-time, and its 
admissible set is formed by its magnitude and rate bounds as 
Eqn. (3). In this study, the flight speed measurement is available 
with the current speedometer, and flight speed bounds and accel-
eration bounds are determined by flight envelop of interest. Note 
that measurement uncertainty is not considered in this paper.

θ ∈ � = {
θ i ≤ θi(t) ≤ θ̄i,−νθ i ≤ θ̇i(t) ≤ νθ i ; i = 1, ...,q

}
. (3)

The size of scheduling parameter region would influence the 
achievable system performance, thus smooth-switching LPV con-
trol design is performed by dividing single parameter region into 
a few small subregions for improving achievable system perfor-
mance. The scheduling parameter region is divided into multiple 
subregions, with an overlapping region between any two adja-
cent subregions. The jth subregion is denoted by �( j) ( j ∈ N J =
[1, 2, . . . , J ]), and switching surface from �(i) to �( j) (i, j ∈ N J , 
i �= j) is denoted by S(i, j) .
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In the derived LPV aeroelastic model, since only the flight speed 
is considered the scheduling parameter, hence q = 1. The partition 
of flight speed envelope shown in Fig. 3 indicates that N J = 3. 
A family of gain-scheduling LPV DOF controllers are designed, and 
adjacent controllers are switched according to hysteresis switch-
ing logic [6]. The switching LPV control scheme is illustrated in 
Fig. 4. When θ crosses the switching surface S(i, j) , ith subregion 
controller K i(θ) is switched to jth subregion controller K j(θ), and 
when θ crosses the switching surface S( j,i) , then K j(θ) is switched 
back to K i(θ). The proposed DOF controller K j(θ) for jth subre-
gion is given by

K j(θ) :
⎧⎨
⎩ ẋK = A j

K (θ)xK + B j
K (θ)y

u = C j
K (θ)xK

(4)

Note that there is no direct feed-through term in u, because a 
strictly proper DOF controller is needed so that it leads to a fi-
nite H2 norm for transfer functions T z2 w2 and Tuw2 . The closed-
loop LPV system has the following state-space realization with 
xT

cl = [xT
p , xT

K ] on the jth subregion:

⎡
⎢⎢⎣

A j
cl B j

cl,∞ B j
cl,2

C j
cl,∞ D j

cl,∞ 0

C j
cl,2 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A BuC j
K B1 B2

B j
K C y A j

K B j
K D y 0

C1 D2C j
K D1 0

C2 0 0 0

⎤
⎥⎥⎥⎦ (5)

For simplicity, the functional dependency on scheduling parameter 
θ will be omitted hereafter.

2.3. Performance specifications and some useful lemmas

2.3.1. H∞ performance (L2–L2 gain)
The H∞ channel is designated to guarantee the robust stabil-

ity of closed-loop system in the presence of modeling errors. Let 
T∞(θ, s) := T z∞ w∞ (θ, s) denotes the parameter-dependent transfer 
function from w∞(t) to z∞(t) and ||T∞||∞ the H∞ norm of T∞ . 
Then, the H∞ performance for the pair (w∞(t), z∞(t)) is defined 
as

||T∞||∞ = sup
θ∈�( j), j∈N J

sup
z∞,w∞∈L2,w∞�=0

||z∞(t)||2
||w∞(t)||2 . (6)

Lemma 1. [8] Suppose there exists a family of parameter dependent 
positive-definite matrices P j∞(θ), such that (7) holds for any subregion 
�( j) , and (8) holds for any adjacent �(i) and �( j) (i, j ∈ N J , i �= j), then 
with the switching LPV controller (4) and hysteresis switching logic, the 
closed-loop system (5) is exponentially stable and ||z∞||2 < γ ||w∞||2
is achieved with given robustness level γ > 0 for all admissible trajecto-
ries θ(t) ∈ �.⎡
⎢⎣ − Ṗ j∞ + A j

cl P j∞ + (∗) ∗ B j
cl

C j
cl,∞ P j∞ −γ I D j

cl,∞
∗ ∗ −γ I

⎤
⎥⎦ < 0 , (7)

P j∞(θ) ≤ P i∞(θ), θ ∈ S(i, j) . (8)

2.3.2. H2 performance
The H2 performance, defined from w2(t) to z2(t), is utilized to 

assess the closed-loop performance against external disturbance. 
Let T2(θ, s) := T z2 w2 (θ, s) be the parameter-dependent transfer 
function from w2(t) to z2(t), and if the subregion system A j

cl is 
stable, the H2 norm is defined by the worst-case H2 performance 
on the subregion �( j) [12]
||T2||22 = sup
θ∈�( j), j∈N J

trace(C j
cl,2(θ) P̄ j

2(θ)C j
cl,2(θ)T ) (9)

where P̄ j
2 solves the differential Riccati equation, ˙̄P j

2 = A j
cl P̄ j

2 +
P̄ j

2(A j
cl)

T + B j
cl(B j

cl)
T , with zero initial condition. Note that the fol-

lowing relationship holds,

sup
w2∈L2,w2 �=0

||z2(t)||∞
||w2(t)||2 ≤ ||T2||2 ,

where the equality holds when the dimension of z2 is one. The 
H2 norm of a deterministic system is denoted by the square sum-
mation of L2 to L∞ gains of individual channels from exogenous 
disturbance inputs to system outputs. In this study, the H2 norm 
is a measure of bending displacements (L∞ norm) due to energy 
bounded (L2 norm) gust disturbance. Alternatively, the H2 norm 
can be interpreted as deterministic covariance of system outputs 
in terms of time correlation [13]. Optimizing the H2 performance 
means suppressing closed-loop output responses against L2 dis-
turbance. We have the following lemma.

Lemma 2. [14] For a stable A j
cl , if there exist a parameter dependent 

positive-definite matrix P j
2(θ) and a constant matrix W , such that,[ − Ṗ j

2 + A j
cl P j

2 + (∗) B j
cl∗ −I

]
< 0 , (10)[

W C j
cl,2 P j

2

∗ P j
2

]
> 0 , (11)

then, the H2 norm of the closed-loop system on any jth subregion is 
bounded by trace(W ), i.e.

trace(C j
cl,2(θ)P j

2(θ)C j
cl,2(θ)T ) < trace(W ) . (12)

The above lemma shows that the H2 norm at �( j) subregion is 
bounded by trace(W ), hence the optimal solution can be achieved 
by minimizing the upper bound trace(W ).

2.3.3. Input Covariance Constraint (ICC) [3]
The control input is given as

u(t) = C j
uxcl =

[
0 C j

K

][
xp

xK

]
.

Hence, the variance of kth control input of jth controller is 
bounded as

cov(uk(θ(t))) ≤ sup
θ∈�( j), j∈N J

ekC j
u P̄ j

2(C j
u)T eT

k = Uk ,

where ek is a selection row vector such that ekC j
u equals to the 

kth row of matrix C j
u , and P̄ j

2 is given by (9). The following lemma 
provides hard constraint on variance of the kth control input for 
any θ ∈ �( j) .

Lemma 3. [3] The ICC condition of the kth control input of the jth con-
troller

Uk = ekCu P̄ j
2C T

u eT
k < ekCu P j

2C T
u eT

k < Ūk (13)

is equivalent to[
Ūk ekC j

u P j
2

∗ P j
2

]
> 0, k = 1,2, · · · ,nu, (14)

where nu is the number of control inputs.
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3. Smooth switching LPV DOF controller design

The following theorem provides the controller synthesis condi-
tions for simultaneous design of smooth switching LPV DOF con-
troller. The cost function (15) is a linear combination of two convex 
functions of output performance trace(W ) and smoothness index 
Ism that is a function of controller variables. The tunable parame-
ter ε is used to balance the output performance and smoothness 
of controller parameters over switching surfaces. A line search for 
ε is recommended in order to find the optimal trade-off relation-
ship. The main result of this paper is contained in the following 
theorem.

Theorem 1. For the LPV system (1) with divided subregions, a family of 
gain-scheduling DOF controllers (4) minimize the ε-balanced cost func-
tion

min
Â j

K ,B̂ j
K ,Ĉ j

K X j ,Y j
ε ∗ trace(W ) + Ism (15)

subject to the ICC constraint (13) and H∞ constraints (7) and (8), if there 
exist a family of parameter-dependent symmetric matrices X j and Y j , 
and a family of parameter-dependent controller variables Â j

K , B̂ j
K , and 

Ĉ j
K ( j ∈ N J ), such that the PLMIs (17)–(21) hold for a given robustness 

level γ > 0 and all admissible θ ∈ � with one of the two conditions 
in (22) satisfied on the switching surfaces for ε > 0. Furthermore, the 
smoothness index Ism is defined as

Ism =
∑

i, j,i �= j

⎛
⎜⎝ || Âi

K − Â j
K ||2 + ||B̂ i

K − B̂ j
K ||2

+||Ĉ i
K − Ĉ j

K ||2 + ||Y i − Y j||2
+||Xi − X j||2

⎞
⎟⎠|θ∈S(i, j) . (16)

⎡
⎢⎢⎣

M11 ∗ ∗ ∗
AT + Â j

K M22 ∗ ∗
BT

1 M32 −γ I ∗
C1 X j + D2Ĉ j

K C1 D1 −γ I

⎤
⎥⎥⎦ < 0 (17)

where

M11 = A X j + Bu Ĉ j
K + (∗) − Ẋ j,

M22 = Y j A + B̂ j
K C y + (∗) + Ẏ j,

M32 = (
Y j B1 + B̂ j

K D y
)T

.[
X j I
I Y j

]
> 0 (18)

⎡
⎣ M11 ∗ ∗

AT + Â j
K M22 ∗

BT
2 (Y j B2 + B̂ j

K D y)
T −I

⎤
⎦ < 0 (19)

⎡
⎣ W C1 X j + D2Ĉ j

K C1

∗ X j I
∗ I Y j

⎤
⎦ > 0 (20)

⎡
⎣ Ūk ekĈ j

K 0
∗ X j I
∗ I Y j

⎤
⎦ > 0, k = 1,2, · · · ,nu . (21)

{
Y i ≥ Y j

Xi − (Y i)−1 ≤ X j − (Y j)−1 or

{
Xi ≤ X j

Y i − (Xi)−1 ≥ Y j − (X j)−1

(22)

Proof. This theorem is proved based on Lemmas 1–3. To convexify 
control strategy with H2 and H∞ channels, let P j = P j∞ for the 
2
jth subregion. Suppose the Lyapunov matrix P j can be partitioned 
as

P j =
[

Y j N j

(N j)T 	

]
, (P j)−1 =

[
X j M j

(M j)T 	

]
(23)

Furthermore, define the congruence matrices 
 j
1 =

[
X j I

(M j)T 0

]
, 



j
2 =

[
I Y j

0 (N j)T

]
, such that P j


j
1 = 


j
2. Introduce the change of 

controller variables as

Â j
K = N j A j

K (M j)T + N j B j
K C y X j + Y j B2C j

K (M j)T + Y j A X j

B̂ j
K = N j B j

K (24)

Ĉ j
K = C j

K (M j)T

For the H∞ performance channel, the PLMIs (17) can be easily ob-
tained by following the procedures in [8]. For the H2 performance 
channel, define the congruence matrix T2 = diag(


j
2, I). Pre- and 

post-multiply (10) by T T
2 and T2 to obtain,

T T
2

[ − Ṗ j + A j
cl P j + (∗) B j

cl∗ −I

]
T2 < 0 , (25)

which yields (19). Define T3 = diag(I, 
2), and pre- and post-
multiply (11) by T T

1 and T1, we obtain[
I


T
2

][
W C j

cl,2 P j

∗ P j

][
I


2

]
> 0 , (26)

which yields (20). For the ICC condition, pre- and post-multiplying 
T T

3 and T3 to (14) yields[
I


T
2

][
Ūk ekC j

u P j
2

∗ P j
2

][
I


2

]
> 0 , (27)

which gives (21). �
Remark 1. The usage of P j

2 = P j∞ convexifies formulated PLMIs 
and makes optimization problem numerically tractable, and as a 
result, this condition will impose conservatism into the optimiza-
tion result. [15] The PLMIs formulated in Theorem 1 renders an 
optimization problem of infinite dimensions with indetermined 
variables. To numerically tackle this problem, affine variable struc-
ture is assumed, for example, Â j

K (θ) is expressed as Â j
K (θ) =

Â j
K 0 +

q∑
i=1

Â j
K iθi . Coefficient check in multi-simplex domain by Polya 

theorem [16] is adopted to attain a finite set of LMIs. Other relax-
ation methods, such as the enforcing multi-convexity method [17]
and sum-of-square matrices [18] can also be used to solve the 
problem. The operation of PLMIs and optimization problem are 
solved by using the parser ROLMIP [19], YALMIP [20] jointly with 
optimization algorithm SeDuMi [21].

Remark 2 (Controller reconstruction). If controller variables are ob-
tained by minimizing the ε-balanced cost function subject to for-
mulated PLMIs, the gain-scheduling DOF controller can be con-
structed by first solving the factorization problem I − Y j X j =
N j(M j)T for N j and M j , and then computing A j

K , B j
K , and C j

K
from the following equations,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A j
K = (

N j
)−1[

Â j
K − Y j Ẋ j − N j

(
Ṁ j

)T − Y j A X j − B̂ j
K C y X j

−Y j B2Ĉ j
K

](
M j

)−T

B j
K = N−1 B̂ j

K

C j
K = Ĉ K

(
M j

)−T

(28)
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Fig. 5. Scheduling parameter with switching events.

Remark 3 (Practical validity). In order to remove the θ̇ dependency 
introduced by Ẋ j and Ẏ j , the practical validity approach presented 
in [22] is applied. Since factorization does not affect the existence 
of a controller, setting either X j or Y j to be a constant matrix 
eliminates the derivative terms. For example, we may set X(θ) =
X0 and N = I for all θ ∈ �( j) , then Y j = Y j(θ) and (M j)T = (I −
Y j(θ)X0). As a result, the reconstructed controller variables can be 
simplified as

⎧⎪⎪⎨
⎪⎪⎩

A j
K = (N j)−1

[
Â j

K − Y j A X j − B̂ j
K C y X j − Y j B2Ĉ j

K

]
(M j)−T

B K = N−1 B̂ j
K

C K = Ĉ K (M j)−T

(29)

Note that the switching stability condition (22) is non-convex 
and is convexified by the selection of frozen X(θ) and Y i(θ) ≥
Y j(θ), θ ∈ S(i, j) . Therefore, matrix-valued coefficient of affine con-
troller variables ( Â j

K i, B̂
j
K i, Ĉ

j
K i, Y

j
i , X0), i = 0, 1, · · · , q, are searched 

to optimize the cost function with the tuning parameter ε .

4. Simulation results and discussion

The scenario that a BWB airplane experiences a sharp gust dis-
turbance is considered in this study. The gust disturbance is as-
sumed to induce a constant shift angle w2 on all control surfaces 
for t ∈ [0, 9] second, and we assume that w2 = 0.005 rad ≈ 0.28◦ . 
As shown in Fig. 5, two switching events happen at t = T1 = 3 s 
and t = T2 = 8 s. Therefore, within the time interval of [0, 10]
second, the scheduling parameter is bounded by 110 m/s ≤ θ ≤
130 m/s, and its rate bounded by −1 m/s2 ≤ θ̇ ≤ 1 m/s2. Note that 
when the open-loop system is subject to gust disturbance, bending 
displacements are unstable, as shown in Fig. 6. A family of smooth-
switching mixed ICC/H∞ LPV DOF controllers are to be designed 
using Theorem 1 for stability as well as achieving a balanced H2
performance and switching smoothness, with guaranteed H∞ ro-
bust performance (at γ = 10).

The trade-off relationship is explored by line search of weight-
ing coefficients ε under different ICC constraints: Ū1 = 8, Ū2 = 12
and Ū3 = 20. As shown in Fig. 7, the switching smoothness in-
dex can be reduced by decreasing weighting coefficient ε , which 
results in an increased in H2 performance index trace(W ) or de-
graded H2 performance. This illustrates that system performance 
is sacrificed in order to enforce switching smoothness. Especially, 
Fig. 6. Unforced bending displacements at wing root (upper) and wing tip (lower).

Fig. 7. Trade-off between trace(W ) and smoothness index Ism .

when ε < 102, the system performance index increases signifi-
cantly for all three ICC constraints, indicating that system perfor-
mance is degrading much drastically in order to achieve smoother 
responses. Thus, an optimal weighting coefficient is chosen to be 
ε = 102 to attain smooth switching with acceptable system per-
formance. To demonstrate that this balanced result is attainable, 
extensive simulations are conducted by considering three different 
controllers: 1) non-switching LPV controller, 2) un-smooth switch-
ing LPV controller, and 3) the proposed smooth-switching LPV con-
troller. And these controllers are applied to the BWB flexible wing 
for vibration suppression.

Figs. 8 and 9 show the bending displacement at wing root (out-
put 1) and wing tip (output 12), respectively, where as Figs. 10–15
show the control allocation of deflection angles of six flaps accord-
ing to three different control strategies.

In upper sub-figure of Fig. 9, smooth (blue) and un-smooth 
(red) responses of bending displacement at wing root are shown. 
At switching event T1 = 3 s, controller 1 is switched to controller 2 
and the sudden changes of un-smooth controllers cause abrupt 
jumps for all three different ICC conditions. On the other hand, 
the smooth-switching LPV controllers enforce smooth output re-
sponses, with slightly increased bending displacement as a minor 
penalty on system performance. Similar behaviors can be observed 
at the switching event T2 = 8 s. Another trade-off relationship can 
be observed from output responses. Different ICC constraints will 
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Fig. 8. Upper: comparison at wing root with smooth/un-smooth switching con-
troller; Lower: comparison at wing root with three control methods.

influence the optimal achievable system performance. With larger 
control input, the bending displacements can be suppressed even 
further, however, when Ū > 12, much more control effort will be 
consumed to further improve system performance, as seen from 
control responses in Figs. 10–15. Therefore, the hard constraint on 
control input is chosen at Ū = 12, in order to achieve acceptable 
performance and energy saving.

The lower sub-figure of Fig. 9 shows the comparison of wing 
tip responses with three different controllers. As shown, all three 
control methods are able to stabilize and suppress bending dis-
placements for the entire flight speed envelope. It can be further 
observed that both smooth and un-smooth switching LPV con-
trollers produce smaller magnitude of bending displacements than 
the non-switching LPV controller, and this is achieved by relaxing 
the PLMI conservativeness and enforcing the optimal performance 
on each subregion. However, un-smooth switching LPV leads to un-
desirable jump on the bending displacement at wing tip, which 
is effectively smoothened by the proposed smooth-switching LPV 
controller.

The responses of control input also demonstrate the effective-
ness of proposed control method. In the upper sub-figures of 
Figs. 10–15, un-smooth control design results in control inputs ex-
hibiting sharp jump at the switching events, but theses jumps are 
effectively removed by the proposed smooth-switching LPV con-
trollers. Especially at switching event T2 = 8 s, un-smooth switch-
ing controller commands the control surfaces to deflect in opposite 
directions within very short time, which imposes a severe capac-
ity burden on the actuator. Smooth-switching controller, on the 
other hand, allocates the deflection angles of control surfaces with 
smooth control commands when switching occurs. In the lower 
sub-figures, control commands of three control methods are com-
pared. Unlike switching LPV control, non-switching LPV control re-
sults in a conservative control input of very small magnitude; due 
to the conservativeness introduced in PLMIs. Un-smooth switching 
LPV control is able to relax conservativeness and assign slightly 
larger control energy, leading to improved vibration suppression 
of bending displacements. However, by minimizing control gain 
differences in optimization cost function, smooth-switching LPV 
control can result in much smoother responses with minor degra-
dation on system performance, which is still better than the per-
formance of the un-smooth switching LPV control.
Fig. 9. Upper: comparison at wing tip with smooth/un-smooth switching controller; 
Lower: comparison at wing tip with three control methods.

Fig. 10. Upper: control 1 responses comparison with smooth/un-smooth switching 
controller; Lower: control 1 responses comparison with three control methods.

Fig. 11. Upper: control 2 responses comparison with smooth/un-smooth switching 
controller; Lower: control 2 responses comparison with three control methods.
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Fig. 12. Upper: control 3 responses comparison with smooth/un-smooth switching 
controller; Lower: control 3 responses comparison with three control methods.

Fig. 13. Upper: control 4 responses comparison with smooth/un-smooth switching 
controller; Lower: control 4 responses comparison with three control methods.

Fig. 14. Upper: control 5 responses comparison with smooth/un-smooth switching 
controller; Lower: control 5 responses comparison with three control methods.

Fig. 15. Upper: control 6 responses comparison with smooth/un-smooth switching 
controller; Lower: control 6 responses comparison with three control methods.

5. Conclusion

This paper presents a simultaneous control design approach 
for smooth-switching ICC/H∞ dynamic output-feedback LPV con-
troller and its application to vibration suppression of a BWB flex-
ible airplane wing. Both innovative smoothness and system per-
formance indexes were incorporated in the cost function and 
weighted by a tunable coefficient, leading to an optimal design 
trade-off between the best achievable H2 performance and switch-
ing smoothness. By this way, the control design method was for-
mulated into a numerically tractable problem, even though certain 
conservatism was introduced during the convexification and relax-
ation process. Simulation results showed that the proposed design 
method is able to significantly reduce the sharp jumps in sys-
tem controls and responses during switching events. Moreover, the 
proposed tunable weighting coefficient provides trade-off between 
system performance and smoothness of response, and the ICC con-
straints on control inputs can also be used to tune the achievable 
performance. These offer great advantages in practical implemen-
tation. The proposed method is based on prior selected subregion 
divisions that may not be an optimal choice. The systematic and 
efficient approach to determine the optimal subregion division is a 
potential research direction.
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