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Mode tracking is one of the critical problems in aeroelastic stability analysis. A novel mode tracking method is

discussed in this paper using both left and right eigenvectors of aeroelastic systems. Orthogonality between left and

right eigenvectors of aeroelastic systems is assessed, which helps to identify and track the aeroelastic modes versus

airspeeds. The developed mode tracking method is then applied in aeroelastic stability analyses of various wing and

aircraft configurations, modeled by using different aeroelastic formulations. In numerical studies, mode tracking

results from thenewmethodare comparedwith those of the traditionalmethods, suchas the approachbasedonmodal

assurance criterion of right eigenvectors of aeroelastic systems. From the studies, the advantages of the new method

introduced in this paper are highlighted. It is verified that the newapproach ismore effective and accurate in tracking

aeroelastic modes, and it is also able to accommodate different aeroelastic formulations and problems.

Nomenclature

A = aeroelastic system matrix
Ai = coefficient matrix of the rational function

approximation, i � 0; 1; 2; : : :
a = dimensionless location of elastic axis behind

midchord of airfoil
b = semichord of airfoil, m
�b = coefficients of inflow states
C1, C2 = coefficients in Wagner’s function
�c, �W = coefficient matrices in inflow equation
D = coefficient matrix of λ
E = coefficient matrix of λ in aerodynamic state

equation
F = coefficient matrix of �q in aerodynamic state

equation
G = coefficient matrix of _q in aerodynamic state

equation
H = coefficient matrix of q in aerodynamic state

equation
h = plunging displacement of airfoil, m
Iα = mass moment of inertia of airfoil, kg ⋅m
Kh = linear spring constant per unit span, N∕m2

Kα = torsional spring constant per unit span, N∕rad
k = reduced frequency
L = aerodynamic lift on airfoil, N∕m
M = aerodynamic moment on airfoil, N
M, C, K = structural inertia, damping, and stiffness matrices
�M, �C, �K = generalized inertia, damping, and stiffness

matrices

MA,
CA, KA

= aerodynamic inertia, damping, and stiffness
matrices

m = total mass of airfoil, kg∕m
N = number of inflow states or number of rational

functions
Q = aerodynamic influence coefficient matrix
q = elastic degrees of freedom
R = aerodynamic load vector
S, ~S = matrices for checking orthogonality between left

and right eigenvectors
Sα = structural imbalance of airfoil, kg
s = Laplace variable
T = matrix for checking orthogonality between right

eigenvectors
t = time, s
V = free-steam velocity, m∕s
w = downwash at three quarters chord point, m∕s
x = aeroelastic state vector
α = pitching angle of airfoil, rad
βi = poles in rational function approximation, i �

1; 2; : : :
ε1, ε2 = constants in Wagner’s function
Λ = diagonalized aeroelastic system matrix
λ = aerodynamic state vector, with components λi, i �

1; 2; : : :
λ0 = inflow velocity, m∕s
ρ = air density, kg∕m3

Φ = left eigenvector matrix
ϕ = Wagner’s function
Ψ = right eigenvector matrix
ωα, ωh = natural frequencies of airfoil pitching and

plunging, rad∕s

I. Introduction

A S A new generation entering the field of aerospace engineering

research, the authors believe that it is an honor to be able to offer

this paper to celebrate Dr. Dewey H. Hodges’ 70th birthday. Over

decades of research, Dr. Hodges has made outstanding achievements

in his research areas of aeroelasticity, geometrically nonlinear beam

theory, and rotorcraft dynamics. His leading research has impacted

and benefited numerous people in these areas, including the authors

of this paper. By taking advantage of this opportunity, the authors

would like to present a study that addresses a fundamental aeroelastic
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problem, in the hope of bringing new insights into the aeroelastic
stability analysis.
In an aeroelastic analysis, mode tracking is a general technique

related to eigenvalue problems with varying parameters, such as
flight speed and altitude. In general, eigenvalue problems can be
classified as either self-adjoint or non-self-adjoint. In self-adjoint
problems, the system energy is conserved. However, it is typically a
non-self-adjoint problem to solve for the aeroelastic stability
boundary [1], where the system energy is not conserved [2]. In an
aeroelastic analysis, the vibration frequencies of different modesmay
change, andmode crossingsmay occurwith the change of airspeed. If
such mode crossings are not correctly tracked, it can cause
misidentification of the aeroelastic phenomenon, because the
observed variations of aeroelastic modes with respect to the varying
parameter could be erroneous. When this occurs, the factors leading
to aeroelastic instabilities (e.g., flutter and divergence) cannot be
adequately understood, and any attempts to improve aircraft
performance based on such predictions may be misguided.
In the early years, aeroelastic mode tracking was manually

performed based on the analyst’s judgment, without applying a
robust and automated tracking algorithm. This method is quick but
may be daunting and confusing, when frequencies of aeroelastic
modes are close in the root locus plane. Desmarais and Bennet [3]
proposed an approach for V-g analysis that relied upon the shape of
the characteristic polynomial and used the Laguerre’s iteration to
converge from a previous eigenvalue to the current one. In this
method, the increments in reduced frequency must be very small. In
addition, this method may fail if the closest zero solution of the
characteristic polynomial near the starting point does not correspond
to the correct eigenvalue. Van Zyl [4] then improved this method by
correlating the modes based on complex inner products between
current and previous eigenvalues (with the increment of the
parameter, e.g., airspeed), which essentially applied the idea ofmodal
assurance criterion (MAC). Later on, Eldred et al. [2] presented two
new methods for mode tracking. One was the complex higher-order
eigenpair perturbation (C-HOEP) algorithm, and the other was the
complex cross-orthogonality check (C-CORC) method. The first
algorithm iteratively computed changes in the eigenpairs due to the
parameter perturbations with an important feature of maintaining the
correspondence between the baseline and perturbed eigenpairs. The
secondmethod, while being similar toVan Zyl’sMACmethod, was a
complex extension of themethod developed byGibson [5]. However,
it used the mass bi-orthogonality to reestablish correspondence after
a standard reanalysis. By comparing the results of his two methods
with those in the previous studies, Eldred et al. recommended C-
HOEP and C-CORC in eigenvalue problems of non-self-adjoint
systems, such as the aeroelastic flutter analysis using theV-gmethod,
due to the robustness of the two methods. Chen [6] applied a
predictor-corrector scheme for the eigenvalue tracking to the g
method in flutter analysis. The approach may predict the eigenvalues
at the next increment point of the varying parameter by using a linear
extrapolation from the eigenvalues and their derivatives at the current
increment point. This scheme was also proved to be more robust and
less costly than other sorting schemes without using the prediction
and correction. Huang et al. [7] tried to deal with the mode tracking
jumps to improve the original piecewise quadratic interpolation
(PQI) method [8] through shape-preserving cubic spline
extrapolation. A fourth-order piecewise polynomial was defined as
the shape-preserving interpolation function, and the existing flutter
data were used to determine the unknown coefficients.
All these studies have provided significant insights into the

aeroelastic mode tracking and are effective on most occasions.
However, there are still some disadvantages of the methods when
applied in specific studies. One noticeable disadvantage is that small
increments of the varying parameter are usually required in most of
these methods to track the aeroelastic modes correctly. For example,
in perturbation approaches, it is important to take small increments of
airspeed to obtain accurate predictions of eigenvalues. Somemethods
based on splines or interpolationmay have difficulties in cases where
multiple aeroelastic modes interact within a small frequency
neighborhood, which happens commonly in aeroelastic problems of

flexible wing structures. In addition, most of these studies are only
validated in specific problems (such asV-g orp-k analysis), modeled
by using a specific aerodynamic formulation. In this paper, a different
mode tracking method using both left and right eigenvectors is
developed to overcome these deficiencies. Mogenier et al. [9] used
both left and right eigenvectors of a rotor to track its modes with the
varying spin speed. The approach has recently been implemented in
MSC.Nastran for the analysis of rotor dynamics [10], where both left
and right eigenvectors of the rotor system are employed to track the
modes dependent on the rotation rates and to facilitate plotting the
Campbell diagram. The rotor dynamics analysis does not involve
aeroelastic effects. This paper, however, explores the mode tracking
problems of different aeroelastic systems by extending this method.
The remainder of this paper is organized as follows. The theoretical

formulation of this study is presented in Sec. II. Several aeroelastic
models are introduced briefly in Sec. II.A, where the structural
dynamics of a typical 2-D airfoil section is coupled with a frequently
used time-domain aerodynamic formulation (such as the Wagner’s
function, finite-state inflow theory, and rational function
approximation). The resulting aeroelastic equations are further
transformed into a unified state-space form, where the aeroelastic
system matrix is the basis of the mode tracking studies. The unified
aeroelastic formulation makes the mode tracking method compatible
with various aeroelastic models. Furthermore, in Sec. II.B, the mode
tracking algorithm using both left and right eigenvectors of the
aeroelastic system matrix is discussed in detail, followed by
numerical studies in Sec. III, using the implemented mode tracking
method. The numerical cases to be presented include the mode
tracking studies on a 2-D airfoil, a linear wing box model, a highly
flexible cantilever wing with geometric nonlinearity, and a highly
flexible blended-wing–body aircraft with coupled aeroelasticity and
flight dynamics. Through the comparison between the new mode
tracking method and those that exist in the literature (especially the
MAC-based method), advantages and effectiveness of the new
method are demonstrated through the studies.

II. Theoretical Formulation

In this section, several aeroelastic formulations are briefly
introduced. They are transformed into a unified state-space form,
where an orthogonality check using both left and right eigenvectors
of the aeroelastic systems is applied to track aeroelastic modes in the
stability analysis.

A. Generalized Aeroelastic Equations of Motion

A 2-D rigid airfoil section is shown in Fig. 1 with a plunging
degree-of-freedom h and a pitching degree-of-freedom α. Its
equation of motion is given by

�
m Sα
Sα Iα

��
�h�t�
�α�t�

�
�

�
Kh 0

0 Kα

��
h�t�
α�t�

�
�

�
−L�t�
M�t�

�
(1)

l.e. t.e. x

bb

ab

e.a.

h(t)(t)

Fig. 1 A 2-D rigid airfoil section.
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wherem, Sα, and Iα are the total mass, structural imbalance, and mass
moment of inertia of the airfoil, respectively.Kh andKα are the linear
and torsional spring constants, respectively.L andM are aerodynamic
force and moment at the elastic axis, respectively. Finally, the
structural damping is not considered for this airfoil for simplicity.
To apply the proposed mode tracking method in aeroelastic

stability analysis, onemay transformEq. (1) into the state-space form.
In addition, this paper aims at developing a mode tracking approach
that can accommodate different unsteady aerodynamic formulations
to determine the loads L and M, as well as the aerodynamic state
differential equations. In doing so, several frequently used unsteady
aerodynamic formulations are considered in this paper.

1. Wagner’s Function

Wagner’s function is used to model the indicial response of the
aerodynamic loads under a sudden change of downwash. As the time
history of the downwash can be approximated by the sum of several
step signals, the unsteady aerodynamic loads under an arbitrary
airfoil motion can be derived by the Duhamel’s integral, given by

L � πρb2� �h� V _α − ab �α�

� 2πρbV

�
w�0�ϕ�t� �

Z
t

0

∂w�τ�
∂τ

ϕ�t − τ� dτ
�

M � πρb2
�
ab �h −

�
1

2
− a

�
bV _α −

�
1

8
� a2

�
b2 �α

�

� 2πρb2V

�
1

2
� a

��
w�0�ϕ�t� �

Z
t

0

∂w�τ�
∂τ

ϕ�t − τ� dτ
�

(2)

where w�t� is the downwash at the three-quarters chord, given by

w�t� � _h�t� �
�
1

2
− a

�
b_α�t� � Vα�t� (3)

and the Wagner’s function ϕ�t� may take the approximate form of

ϕ�t� � 1 − C1e
−ε1�V∕b�t − C2e

−ε2�V∕b�t (4)

where C1 � 0.165, C2 � 0.335, ε1 � 0.0455, and ε2 � 0.3 [11].
The integrals in Eq. (2) are transformed by using integration by parts,
leading to

L � πρb2� �h� V _α − ab �α�

� 2πρbV

�
w�t�ϕ�0� −

Z
t

0

w�τ� ∂ϕ�t − τ�
∂τ

dτ

�

M � πρb2
�
ab �h −

�
1

2
− a

�
bV _α −

�
1

8
� a2

�
b2 �α

�

� 2πρb2V

�
1

2
� a

��
w�t�ϕ�0� −

Z
t

0

w�τ� ∂ϕ�t − τ�
∂τ

dτ

�
(5)

The integrals in Eq. (5) are defined as a summation of two individual
aerodynamic states, λ1 and λ2, given by

λ1 � C1ε1
V

b

Z
t

0

w�τ�e−ε1�V∕b��t−τ� dτ

λ2 � C2ε2
V

b

Z
t

0

w�τ�e−ε2�V∕b��t−τ� dτ

λ1 � λ2 � −
Z

t

0

w�τ� ∂ϕ�t − τ�
∂τ

dτ (6)

To simplify the equations, one can define the airfoil motion and
complete state vector as

q � fh α gT
λ � f λ1 λ2 gT (7)

Obviously, the aerodynamic lift and moment are both functions of

airfoil motion q, its time derivatives ( _q and �q), as well as the

aerodynamic state λ, that is,

�
L
M

�
� MA �q� CA _q�KAq�Dλ (8)

where

MA � πρb2
� 1 −ab

ab −
�
1
8
� a2

	
b2

�

CA � πρbV

2
4 2ϕ�0� b� 2

�
1
2
− a

	
bϕ�0�

2
�
1
2
� a

	
bϕ�0� −

�
1
2
− a

	
b2 � 2

�
1
4
− a2

	
b2ϕ�0�

3
5

KA � 2πρbV2

2
4 0 ϕ�0�
0

�
1
2
� a

	
bϕ�0�

3
5

D � 2πρbV

2
4 1 1�

1
2
� a

	
b

�
1
2
� a

�
b

3
5 (9)

One can further take the time derivatives of λ1 and λ2 in Eq. (6) to set
up the aerodynamic state differential equation, given by

_λ1 � −ε1
V

b
λ1 � C1ε1

V

b

�
_h�

�
1

2
− a

�
b _α� Vα

�

_λ2 � −ε2
V

b
λ2 � C2ε2

V

b

�
_h�

�
1

2
− a

�
b _α� Vα

�
(10)

where _h�0� � 0, _α�0� � 0, and α�0� � 0. Eq. (10) can be written in
the matrix form of

_λ � Eλ� F �q�G _q�Hq (11)

where

E �
�−ε1 V

b 0

0 −ε2 V
b

�
; F � 02×2;

G �
2
4C1ε1

V
b C1ε1V

�
1
2
− a

	

C2ε2
V
b C2ε2V

�
1
2
− a

	
3
5; H �

�
0 C1ε1

V2

b

0 C2ε2
V2

b

�
(12)

To complete the aeroelastic equation, one can substitute Eq. (8)

into Eq. (1) and combine with Eq. (11), yielding

�M �q� �C _q� �Kq � Dλ

_λ � Eλ� F �q�G _q�Hq (13)

where the generalized aeroelasticmatrices, �M, �C, and �K, are obtained

by combining the structural matrices in Eq. (1), with the

corresponding aerodynamic matrices in Eq. (9).

2. Finite-State Inflow Theory

The second time-domain unsteady aerodynamic formulation

considered in this paper is the finite-state inflow theory developed by

Peters and co-workers [12–14]. It calculates aerodynamic loads on a

thin airfoil section in incompressible inviscid flow. The lift and

moment of a thin 2-D airfoil section about the elastic axis are given by
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L � πρb2� �h� V _α − ab �α�

� 2πρbV2

�
α�

_h

V
�

�
1

2
− a

�
b
_α

V
−
λ0
V

�

M � πρb2
�
ab �h −

�
1

2
− a

�
bV _α −

�
1

8
� a2

�
b2 �α

�

� 2πρb2V2

�
1

2
� a

��
α�

_h

V
�

�
1

2
− a

�
b
_α

V
−
λ0
V

�
(14)

where the inflow parameter λ0 accounts for induced flow due to the
free vorticity, which is the weighted summation of the inflow states λ
as described in Peters and Johnson [12], that is,

λ0 �
1

2

XN
i�1

�biλi (15)

whereN is the number of inflow states defined on the airfoil, and �b are
coefficients that can be obtained by the least-square method [13].
Even though the aerodynamic states are defined differently,

Eq. (14) can still be written in a similar form as Eq. (8), whereas the
aerodynamic matrices are given by

MA � πρb2

2
4 1 −ab

ab −
�
1
8
� a2

	
b2

3
5

CA � 2πρbV

2
4 1 �1 − a�b�

1
2
� a

	
b

�
1
2
− a

	
ab2

3
5

KA � 2πρbV

2
4 0 V

0
�
1
2
� a

	
bV

3
5

D � −πρbV

2
4 �b1 �b2 · · · �bN�

1
2
� a

	
b �b1

�
1
2
� a

	
b �b2 · · ·

�
1
2
� a

	
b �bN

3
5

(16)

Additionally, the governing equation for the inflow states is

�W _λ�V

b
λ � �c

�
�h�

�
1

2
− a

�
b�α� V _α

�
(17)

where the coefficients �W and �c are both defined in Peters et al. [13].
Equation (17) can be conveniently transformed into the same form as
Eq. (11),with different definitions of the coefficientmatricesE,F,G,
andH, given by

E � �W−1
�
diag

�
−
V

b

��
N×N

F � �W−1
�
�c

�
1
2
− a

�
b �c

�

G � �W−1� 0N×1 V �c � H � 0N×N (18)

With the details omitted, one can demonstrate that the aeroelastic
equation with the finite-state inflow theory still falls in the same
generalized form as Eq. (13).

3. Unsteady Aerodynamics with Rational Functions

The rational function approximation (RFA) [15,16] can be used to
transfer frequency-dependent aerodynamic loads into the time
domain. The aeroelastic equation in the Laplace domain is given by

�Ms2 � K�q�s� � 1

2
ρV2Q�s�q�s� (19)

where s is the Laplace variable. Q�s� is the approximation to the
aerodynamic influence coefficient (AIC) matrix. With the Roger’s
approximation [17], Q�s� is given by

Q�s� � A0 �A1

sb

V
�A2

�
sb

V

�
2

�
XN
i�1

�
Ai�2

s

s� V
b βi

�
(20)

where the first three entries represent the quasi-steady aerodynamic

load, while the remaining items in summation account for the lag

behavior of unsteady aerodynamic load. All the Ai are unknown

coefficients that can be determined through the least square fitting

[16]. Once the unknown coefficients are determined, Eq. (19) can be

transformed to the time domain as

M �q�t� � Kq�t� � 1

2
ρV2A0q�t� �

1

2
ρV2

�
b

V

�
A1 _q�t�

� 1

2
ρV2

�
b

V

�
2

A2 �q�t� �
XN
i�1

�
1

2
ρV2Ai�2λi

�
(21)

which is rewritten as

�
M −

1

2
ρV2

�
b

V

�
2

A2

�
�q�t� �

�
−
1

2
ρV2

b

V
A1

�
_q�t�

�
�
K −

1

2
ρV2A0

�
q�t� �

XN
i�1

�
1

2
ρV2Ai�2λi

�
(22)

where the augmented states λi are defined by

_λi�s� �
s

s� V
b βi

q�s�; �i � 1; 2; · · · ; N� (23)

which is transformed to the time domain, resulting in the governing

differential equation for the aerodynamic states

_λi � −
V

b
βiλi � _q; �i � 1; 2; · · · ; N� (24)

Equations (22) and (24), after being combined to form the aeroelastic

equation, can be easily written into the generalized form of Eq. (13).

In addition to the RFA, there are other approaches (e.g., minimum-

state RFA [18], p-transform [19,20], and FAMUSS [21]) that can be

applied to generate reduced-order aerodynamic models and build

state-space formulations for aeroelastic and aeroservoelastic studies.

A good summary on various methods and a comparison on their

advantages and disadvantages in aeroelastic studies were provided in

[22,23]. The RFA is chosen in the current study due to its simplicity

in deriving the generalized aeroelastic equation in the form

of Eq. (13).

4. Aeroelastic Formulation for Flexible Wings with 2-D Aerodynamics

The previous discussions on the aeroelastic formulations were all

based on 2-D airfoils. However, it does not prevent one from applying

these aerodynamic theories to analyze flexible wings, where recent

research activities can be found in the literature. Palacios et al. [24]

provided a summary of aeroelastic modeling for flexible wings. For

most formulations, one may still reach the aeroelastic equations in a

form of

M �q� C _q� Kq � R� �q; _q; q; λ�
_λ � Eλ� F �q� G _q�Hq (25)

where q are the elastic degrees of freedom and λ are the aerodynamic

states. R is the aerodynamic load vector as a function of the elastic

degrees and the aerodynamic states. The coefficient matrices of

aerodynamic statesE, F, G, andH should be determined according

to the applied unsteady aerodynamic theory when setting up the

aeroelastic equation.

4450 HANG, FEI, AND SU

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

L
A

B
A

M
A

 -
 T

U
SC

A
L

O
O

SA
 o

n 
O

ct
ob

er
 1

8,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

72
97

 



B. Orthogonality Check Method Using Left and Right Eigenvectors

If the problemdescribed byEq. (25) is geometrically nonlinear, the

inertia, damping, and stiffness matrices (M, C, and K) may also be

functions of the elastic degrees of freedom. To find the stability

boundary of such a nonlinear system, one needs to linearize the

equation about a nonlinear equilibrium state under a given parameter

(e.g., airspeed) as shown in Su and Cesnik [25]. However, this

process is not required for linear problems. The linear or linearized

aeroelastic equation can be reorganized with all terms of the same

variables collected together, resulting in

�M �q� �C _q� �Kq � Dλ

_λ � Eλ� F �q� G _q�Hq (26)

where �M, �C, and �K are generalized inertia, damping, and stiffness

matrices, respectively. Equation (26) may be further written into the

state-space form as

_x � Ax (27)

where

x � f qT _qT λT gT

A �
2
4
I 0 0

0 �M 0

0 −F I

3
5

−12
4

0 I 0

− �K − �C D

H G E

3
5 (28)

Let A be the system matrix of an aeroelastic system at a given

airspeed, which is, in general, not symmetric in aeroelastic problems.

According to the eigendecomposition theory (also called spectral

decomposition), A can be diagonalized if it has no repeated

eigenvalues, given by

A � ΨΛΦH (29)

where Λ is a diagonal matrix, and

ΦH � Ψ−1 (30)

The operator �⋅�H is the conjugate transpose or Hermitian transpose.

Postmultiplying �ΦH�−1 � Ψ on both sides of Eq. (29) yields

AΨ � ΨΛ (31)

which is essentially a right eigenvalue problem of A. The diagonal

entries of Λ are the eigenvalues. Each column ofΨ corresponds to a

right eigenvector ofA. Similarly, one can premultiplyΦH � Ψ−1 on

both sides of Eq. (29), resulting in

ΦHA � ΛΦH (32)

which is essentially a left eigenvalue problem ofA. Here, each row of

ΦH is the left eigenvector of the corresponding eigenvalue of A.

Therefore, the left and right eigenvector matrices ofA can be used to

diagonalize the system matrix by following Eq. (29). In addition, the

two eigenvector matrices are orthogonal to each other, that is,

ΦHΨ � I (33)

which is apparent according to Eq. (30).
Such a bi-orthogonal relation can be applied to track the aeroelastic

modes with a varying airspeed. At two consecutive airspeed

increments (Vi and Vi�1), the aeroelastic systems are denoted as

Ai � ΨiΛiΦH
i

Ai�1 � Ψi�1Λi�1ΦH
i�1 (34)

The matrix for checking orthogonality of the aeroelastic modes can
be defined as

Si;i�1�ΔΦH
i Ψi�1 (35)

Equation (35) is similar to Eq. (33), yet with the left and right
eigenvectors evaluated at two different airspeeds. If the speed
increment ΔV is not significantly large, the bi-orthogonal relation is
approximately maintained [4]. That is, Si;i�1 is a diagonally
dominantmatrix [2] if themodes are properly sorted, even though it is
no longer an identity matrix. One may define a similar orthogonality
checking matrix as

~Si;i�1�ΔΨH
i Φi�1 (36)

which is also diagonally dominant. One can take advantage of both
Eqs. (35) and (36) when implementing the current mode tracking
method. The scheme is briefly illustrated in Fig. 2. If the modes of
systemAi are already sorted, the modes ofAi�1 can be tracked using
the sorted left eigenvectormatrixΦi (ofAi) and the right eigenvector
matrixΨi�1 (ofAi�1). In the sorting process, the columns ofΨi�1 are
reordered to make the product �ΦH

i ⋅Ψi�1� a diagonally dominant
matrix. At the next speed increment to track the modes of system
Ai�2, one can use the previously sorted right eigenvector matrix
Ψi�1, while involving the left eigenvector matrixΦi�2 (ofAi�2). In
this sorting process, the columns ofΦi�2 are then reordered to make
�ΨH

i�1 ⋅Φi�2� diagonally dominant. By implementing this scheme,
one only has to solve for either left or right eigenvectors of the
aeroelastic system at one airspeed increment, which reduces the
overall calculation expense for the mode tracking.
The mode tracking method developed in this paper is based on the

eigendecomposition theory [or Eq. (29)] that is true as long as the
system (either self-adjoint or non-self-adjoint) has no repeated
eigenvalues. Consequently, it is also true for non-self-adjoint
aeroelastic systems under all airspeed, where the left and right
eigenvectors of the system are always orthogonal. Therefore, the
orthogonality checking matrices S and ~S are diagonally dominant,
evenwhen the airspeed is about the flutter boundary. In the following
numerical studies, the mode tracking method discussed above is
compared with the method using MAC values between the right
eigenvectors of the aeroelastic systems, where the orthogonality
checking criterion is

Ti;i�1�ΔΨH
i Ψi�1 (37)

Note that the right eigenvectors of the aeroelastic system are not
always orthogonal, as the system is non-self-adjoint, which brings
difficulty to the mode tracking using such a MAC-based method in
some cases.

III. Numerical Studies

Numerical studies on aeroelastic mode tracking are presented in
this section, where the new approach using both left and right
eigenvectors for orthogonality check is compared with other
methods. The advantages of this approach are highlighted from cases
with a linear aeroelastic problem, a geometrically nonlinear
aeroelastic problem, and a coupled aeroelastic and flight dynamic
problem, respectively.

Ai

i

Ai+1 Ai+2

i+1

i+1

i+2

i+2Si,i+1
Si+1,i+2

V

i

Fig. 2 Scheme of orthogonality check using both left and right
eigenvectors.
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A. Two-Dimensional Airfoil

A 2-D airfoil (refer to Fig. 1) is studied in this case, whose

parameters are nondimensionalized as follows: a � −0.3,
ωh∕ωα � 0.5, Sα∕mb � 0.2,


















Iα∕mb2

p
� 0.3, and m∕πρb2 � 10.

The unsteady aerodynamic loads on the airfoil are calculated using

the Theodorsen’s formula, with a one-term Padé approximation.

Eigenvalues of the aeroelastic system are solved as a function of the

reduced velocity, �V � V∕bωα. Figure 3 plots the aeroelastic

frequency and damping extracted from the eigenvalues. All the

curves in Fig. 3 are generated based on the roots from the flutter

determinant at each reduced velocity without sorting. It can be seen
that the solution effectively finds the flutter point (Vf � 1.2). Several
roots cross with each other, where the cause of the mode crossings in
this sample is attributed to the numerical scheme that finds the roots
of the flutter determinant. In complicated problems, however,
aeroelastic mode crossing may cause misunderstanding of the flutter
mechanism. For such a simple case, all aeroelastic modes can be
easily identified, and the figures can be revised to reflect the sorted
modes (see Fig. 4). However, such work is never straightforward for
complicated aeroelastic systems, as discussed in Sec. I. Therefore, it
is of great importance to sort and track these roots properly and
efficiently.

B. Linear Wing Box Model

The wing model studied in this case is illustrated in Fig. 5. It is an
unswept cantilever wing with a constant cross section. The material
properties of the wing box model are listed in Table 1. The finite
element model (created in MSC.Nastran) of this wing box model is
shown in Fig. 6. There are three bays in thiswing boxmodel. For each
bay, there are two skin elements, two sparwebs, and one rib. There are
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Fig. 3 Frequency and damping vs reduced velocity of 2-D airfoil (no sort).
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Fig. 4 Frequency and damping vs reduced velocity of 2-D airfoil (sorted).

Fig. 5 Geometry of rectangular wing box (unit in inches).

Table 1 Material properties of
rectangular wing box

Property Value

Young’s modulus, E 10.5 × 106 psi
Shear modulus, G 4.0 × 106 psi
Density, ρ 2.633 × 10−4 slug∕in.3

Fig. 6 FEM and aerodynamic model of rectangular wing box.
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four spar caps modeled by axial rod elements in each bay. This wing
box model was originally studied by Rudisill and Bhatia [26] and
later by McIntosh and Ashley [27], as well as other researchers
[28,29]. Amode tracking study on this wingmodel was performed in
[30]. The results of that study are repeated herein for completeness
and to comparewith themode trackingmethod using both the left and
right eigenvectors.
The unsteady aerodynamic loads are established through the

doublet lattice method (DLM) implemented in MSC.Nastran.M,K,
and the aerodynamic influence coefficient matrix Q in a range of
reduced frequency k are extracted from MSC.Nastran. Because the
aeroelastic model is linear, the linearization process described in the
previous section is unnecessary. After applying the rational function
approximation approach, the aeroelastic equation in the state-space
form can be obtained. The aeroelastic stability analysis is carried out
by solving the eigenvalue problem of system matrix A.
When the eigenvalues are just sorted by the imaginary part

(frequency) in ascending order, six modes that have the smallest

imaginary parts are selected to be plotted without applying any mode
tracking technique, as shown in Fig. 7.Mode crossing occurs in these
plots, and the trends of natural frequencies and damping ratios are not
correctly tracked. However, these modes are aerodynamic dominant,
and they do not help to understand the real mechanism of the
aeroelastic instability. Figure 8 shows the frequency and damping
ratio of the first six elastic modes, where the mode tracking is
performed by checking the modal assurance criterion (MAC)
numbers of the aeroelastic systems’ right eigenvectors (named as
“MACmethod” in this paper). The damping ratio of the secondmode
(a torsional mode) crosses the zero-line at the airspeed of
V � 273 m∕s, which implies the onset of flutter. This flutter speed is
similar to the one (267 m∕s) reported by Striz and Venkayya [29].
Even though the mode tracking result appears to be reasonable, the
first mode is inaccurately tracked regarding both the frequency and
damping ratio. The first mode is estimated to merge with the second
mode after the airspeedV � 280 m∕s, which is shown and proved to
be erroneous in the following discussion. The error is attributed to a

Fig. 7 Frequency (left) and damping ratio (right) vs airspeed (no sort).

Fig. 8 Frequency (left) and damping ratio (right) vs airspeed using MAC method, ΔV � 20 m∕s.

Fig. 9 Frequency (left) and damping ratio (right) vs airspeed using current orthogonality check method, ΔV � 30 m∕s.
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shortcoming of theMAC-based method that is also discussed later in

detail.

Nonetheless, if the orthogonality checkmethod using both left and

right eigenvectors is applied, every mode can be separated as shown

in Fig. 9. The frequency versus airspeed plot indicates that the

aeroelastic divergence occurs as the first modal frequency goes to

zero at airspeed 301 m∕s, which is also very close to the results from
Striz andVenkayya [29]. In addition, the orthogonality checkmethod
has robust effectiveness even when the speed increment is relatively
large (hereΔV � 30 m∕s). However, other mode tracking methods,
including the MAC method and perturbation methods, usually
require a smaller airspeed increment to ensure the solution accuracy,
which indicates a more substantial computation expense.
It can be noted that the data plotted in Figs. 8 and 9 both come from

eigenvalue analysis of the same aeroelastic system, except that the
MAC method only uses the right eigenvectors. It is because of this
reason that the MAC method is not able to identify the aeroelastic
mode near the flutter point. Figures 10 and 11 plot the entries of the
orthogonality checking matrices using the MAC method and the
method based on left and right eigenvectors, respectively, where the
advantage of latter one is highlighted. For a non-self-adjoint system,
such as aeroelastic systems, the right eigenvectors are no longer
orthogonal to each other. When the system is at an airspeed close to
the flutter point (here V � 280 m∕s), the off-diagonal entries are
large enough to preclude the clear mode separation as shown in
Fig. 10. With similar MAC values, the MACmethod fails to identify
the two modes. On the other hand, the mode tracking method based
on left and right eigenvectors is much more effective because the
orthogonality is maintained between the left and right eigenvectors at
an airspeed close to the flutter point, as shown in Fig. 11. The
diagonal entries in this figure are always dominant.

C. Highly Flexible Cantilever Wing

In this case, the mode tracking method introduced in this paper is
tested with a geometrically nonlinear aeroelastic system. By
following the approach described in [25], the aeroelastic stability
analysis of a slenderwing is carried out, whose properties are listed in
Table 2. The wing is discretized into eight strain-based nonlinear
beam finite elements (refer to Su and Cesnik [31] for the beam
formulation), coupled with the finite-state unsteady aerodynamics.
The air density is 0.088 kg∕m3 at the 20,000 m altitude.
With a cantilevered boundary condition and a root pitch angle of

2°, stability of the aeroelastic system is evaluated within the free
stream velocity range between 1 and 35 m∕s, with an increment of
1 m∕s. From the root locus plot (Fig. 12), the flutter boundary is
identified as 23.2 m∕s with a frequency of 10.2 rad∕s. However, the
root loci of several modes are very close to each other, whichmakes it
inconvenient to track all thesemodes directly fromFig. 12. Individual
aeroelasticmodes are tracked by using themethodwith orthogonality
check discussed in this paper. Figure 13 plots the frequency and
damping ratio of some aeroelastic modes around the flutter point,
while Fig. 14 includes modes in a wider frequency range. It is not a
surprise that Fig. 13 predicts the same flutter boundary as the root
locus plot does. The orthogonality of the aeroelastic modes is
checked at preflutter speeds (22 and 23 m∕s). Figure 15 is the
orthogonality coefficient matrix when the modes are sorted by using
theMAC-basedmethod. It is noticeable that there are many large off-
diagonal values in Fig. 15, which means that some modes may be
incorrectly tracked. However, if the orthogonality is checked using
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Fig. 10 Normalized orthogonality coefficient using MAC method.
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Fig. 11 Normalized orthogonality coefficient using current method.

Table 2 Properties of highly flexible wing

Property Value

Span 16 m
Chord 1 m
Spanwise ref. axis location (from l.e.) 50% of chord
Center of gravity (from l.e.) 50% of chord
Flat bending rigidity 2 × 104 N ⋅m2

Chord bending rigidity 4 × 106 N ⋅m2

Torsional rigidity 1 × 104 N ⋅m2

Mass per unit span 0.75 kg∕m
Rotational inertia per unit span 0.1 kg ⋅m
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Fig. 12 Root locus plot of slender wing (triangle, 1 m∕s; circle, 35 m∕s).
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both left and right eigenvectors, the orthogonality coefficient matrix
becomes diagonally dominant, as shown in Fig. 16, indicating that
every mode can be tracked correctly. These results verify the
effectiveness and robustness of the mode tracking method based on
left and right eigenvectors in the stability analysis of a nonlinear
aeroelastic system.
A further study is carried out tomore closely investigate themodes

highlighted by the circle in Fig. 14. The mode tracking algorithm has
identified them individually, with a mode coalescence and separation
happening between 28 and 29 m∕s. By reviewing the trend of
eigenvalues, it is “possible” that the two modes may cross as
indicated by the dashed line. From intuition, one would not expect a
mode’s frequency to vary from 200 rad∕s to more than 350 rad∕s

within a small velocity range. The current mode tracking algorithm

can show the correlation between the two modes around that region.

In doing so, the speed increment is increased to 2 m∕s (between 28

and 30 m∕s), and the orthogonality check is performed on modes 10

and 11. The orthogonality coefficient matrix is shown in Fig. 17. The

mode marked with the circle in Fig. 14 has the best correlation with

the mode marked with the square, even with a larger velocity

increment. This study verifies that the mode tracking result shown in

Fig. 14, that is, the dashed path, cannot be an aeroelastic mode.

From the aeroelastic stability analysis with the mode tracking, it

can be concluded that the mode tracking method based on left and

right eigenvectors is feasible for use on geometrically nonlinear

aeroelastic systems.
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Fig. 13 Aeroelastic mode frequency (left) and damping ratio (right) vs airspeed around flutter point.
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Fig. 14 Aeroelastic mode frequency vs airspeed.
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check method (28 and 30 m∕s).
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D. Aircraft with Coupled Aeroelastic and Flight Dynamic Modes

A similar study is further performed on a blended-wing–body
aircraft configuration, illustrated in Fig. 18 with more properties
found in Su and Cesnik [25]. Both the body and the wings are
modeled as strain-based beams coupled with finite-state unsteady
aerodynamics. This model incorporates 6 beam elements in the body
and 12 beam elements on each wing. For trim and maneuver
purposes, elevons are defined on inner nine elements of the wing
members. Note that thewings of this configuration are so flexible that
their elastic modes are coupled with the rigid-body modes of the

whole vehicle [25], resulting in a dynamic instability known as body-
freedom flutter. In addition, the aeroelastic system matrix A has a
dimension of 433 for the whole free-flight aircraft. Therefore, the
mode tracking algorithm needs to recognize and track both elastic
and rigid body modes correctly.
With the large dimension of the system matrix in this case and the

interaction between aerodynamic modes and elastic/flight dynamic
modes, several interfering eigenvalue pairs can be observed upon

solving the eigenvalue problem. Therefore, in this numerical case (also
in the previous cases to some extent), a preliminary eigenvalue filtering
is performed before the orthogonality check is applied. In addition,
high-frequencymodes that arenot of interest are eliminated.Therefore,
all eigenvalues with imaginary parts greater than 120 rad∕s and real
parts less than −40 rad∕s are removed, where the cutoff values are
chosen after an observation on the eigenvalues of the system. The root
locus plot (Fig. 19) shows the variation tendency of the eigenvalues.
One can clearly discern the aerodynamic-dominant modes (with large
damping but small frequencies), rigid-body-dominant modes (with
both small damping and frequencies), as well as the remaining elastic-
dominant modes, even though all of them are coupledmodes in reality.
One mode (the first wing bending mode coupled with body pitching
and plunging) crosses the imaginary axis around the velocity of
115 m∕s, indicating the onset of aeroelastic instability. This stability
boundary is close to the result reported by Su and Cesnik [25]
(Vf � 123 m∕s), where the difference is attributed to the different
mesh and structural damping applied in the models. It can also be
observed that somemodes hardly changewith the increase of airspeed
in Fig. 19.All rigid-bodymodes are in a cluster around the origin point
of the plot. To track their changes with the increase of velocity, the
mode tracking method is applied with the orthogonality check using
left and right eigenvectors, with the results shown in Fig. 20. As can be
seen, all modes can be individually identified and separated from each
other, even though the aerodynamic and rigid-body modes are
numerically close together as shown in Fig. 19. From the V-g plot of
Fig. 20, the flutter boundary can be identified, as there is only one
damping ratio that crosses zero at 115 m∕s.

IV. Conclusions

In this paper, a mode tracking method was developed for
aeroelastic stability analysis, based on the orthogonality check of
both the left and right eigenvectors of aeroelastic systems. The
approach is adaptable to different aeroelastic formulations, as long as
they can be transformed into a unified state-space representation. The
method was demonstrated to be feasible for several frequently used
unsteady aerodynamic theories and aeroelastic formulations. The
detailed theoretical basis of themode tracking technique using the left
and right eigenvectors was highlighted in the paper, where two
orthogonality checking matrices were used to track the aeroelastic
modes. Numerical studies were conducted with different aeroelastic
problems. The aeroelastic mode crossing phenomenon was first
demonstrated with a 2-D airfoil. In the linear cantilever wing box and
geometrically nonlinear cantilever wing cases, the proposed
orthogonality check method was applied and compared with another
model tracking method based on modal assurance criterion numbers
of aeroelastic modes. The numerical results demonstrated that the
newly developed method had a better capability in separating and
tracking aeroelastic modes. The method was also more efficient as it
allowed for larger velocity increment in the process of tracking,
compared with the existing methods. Moreover, for the nonlinear
blended-wing–body configuration with coupled aeroelasticity and
flight dynamics, the results showed that the new method could
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Fig. 18 Geometry of blended-wing–body configuration.
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Fig. 19 Root locus of blended-wing–body configuration (triangle,
80 m∕s; circle, 130 m∕s).
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Fig. 20 Modal frequency (left) and damping (right) vs airspeed of blended-wing–body configuration.
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successfully separate different types of modes with elastic-,
aerodynamic-, or rigid-body dominance, respectively. It was also
able to track the variation of rigid-body-dominant modes whose
frequencies were close to zero. Through these numerical studies,
advantages and effectiveness of the newmode trackingmethod using
both the left and right eigenvectors have been demonstrated.
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