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Adaptive model predictive control of

a six-rotor electric vertical take-off and
landing urban air mobility aircraft subject to
motor failure during hovering
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Abstract

In this article, motor failure control of a six-rotor electric vertical take-off and landing (€VTOL) urban air mobility aircraft is
investigated using adaptive model predictive control (MPC) based on the linear parameter-varying (LPV) model developed
using the nonlinear rigid-body aircraft model. For capturing the aircraft dynamics under motor failure conditions, a family of
linearized models are obtained by trimming the nonlinear aircraft model at multiple equilibrium conditions and the LPV
model is obtained by linking the linear models using the failed rotor speed, where the system transition from healthy to
failure is modeled by a scheduling parameter calculated based on failed rotor speed caused by available motor peak power
after failure. The proposed adaptive MPC is developed to optimize the system output performance, including the rigid-body
aircraft velocity and altitude, by using quadratic programming optimization with reference compensation subject to a set of
time-varying constraints representing the current available propeller acceleration calculated based on the motor power.
Simulation study is conducted based on the developed LPV control design and original nonlinear rigid-body model, and the
simulation results demonstrate that the designed adaptive MPC controller is able to recover and maintain the aircraft at

desired stable condition after motor failure.

Date received: 7 February 2021; accepted: 23 June 2021

Introduction

Urban air mobility (UAM) has attracted tremendous
attention from the vehicle industry and academia com-
munity. It is viewed as the promising future as part of
next-generation transportation and expected to be a quiet,
fast, clean, efficient, and safe point-to-point transportation.
Since the complete concept of UAM is still under ex-
ploration, a consensus has not yet been achieved com-
pletely within the community. Researchers are following
their design philosophy and guidelines in UAM vehicle
development. One of the most promising and popular
UAM concepts is electric vertical take-off and landing
(eVTOL) vehicles. Equipped with distributed electric
propulsion system, eVTOL vehicles use multiple electric
motors and propellers to provide the lift force for vertical
take-off and landing, which has been adopted by many
leading eVTOL companies, for example, Boeing Aurora,
Airbus A3, Joby Aviation, and Lilium. At the same time,
eVTOL-related areas are widely investigated, including
market prediction,' voyage planning,>™ power and energy
modeling and optimization,®"' dynamics analysis,'>
and failure study.'> Compared with a traditional heli-
copter, an eVTOL vehicle has not only enhanced di-
versification of power distribution, including position

and tilting freedom, but also fast-response electric motors.
Therefore, the eVTOL vehicle dynamics is complicated
and challenging to control, especially under motor failure
condition.

Hovering control has always been crucial for vehicle
safety consideration, especially when the aircraft is under
motor failure situation, and many control strategies were
exploited to recover from it. Traditional proportional-
integral-derivative (PID) control is developed in Ref. 14
for crash-resistant purpose. Also, fault tolerant control
strategy is applied to an octocoptor'® using a super
twisting sliding mode observer in the case of single motor
failure. In Ref. 16, linear quadratic regulator is used for
a morphing quadrotor vehicle, assuming that one motor
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output torque goes to zero instantly. However, the control
input constraints (e.g., maximum propeller driven torques)
are not considered in this case, which is not practical since
the feasibility of control solution will affect the closed-
loop system performance, especially under motor failure
condition.

The model predictive control (MPC) theory becomes
a good candidate for the UAM hovering control due to its
capability of handling a set of constraints.'’* For
eVOTL aircraft hovering control, motor power is one of
the most crucial constraints to be considered. Also,
comparing with traditional PID control that requires
a huge amount of tuning effort to make it work, MPC uses
a specific set of design weightings to shape the target
performance. Note that in order to make the MPC real-
time implementable, a linear time-invariant (LTI) system
model is often used for MPC control design. Often,
a linearized model at current hovering condition can be
obtained and used for MPC design, but it is difficult to
obtain an LTI model during the transition from normal
hovering to motor failure condition. With the development
of adaptive MPC?*?! and LPVmodeling method,**™* the
adaptive MPC strategy—designed based on the LPV
system model has been widely used for parameter-varying
systems, which is aimed to improve closed-loop system
performance.” ¢

In this article, based on a nonlinear six-rotor eVTOL
UAM aircraft model, developed using formulation syn-
thesizing complicated dynamics in Ref. 27, an LPV
control design model is developed based on a set of LTI
models obtained by linearizing the nonlinear one under
different failed rotor speeds and an adaptive MPC strategy
is developed based on the developed LPV control design
model with time-varying control (motor torque) con-
straints calculated based on the available power of motors
driving propellers under failure condition. For improving
the closed-loop system performance and reducing the
real-time computational cost, a set of feedback dynamic
reference compensation equations is developed and cali-
brated. The simulation investigation is conducted by ap-
plying the designed adaptive MPC strategy to both LPV
and nonlinear rigid-body UAM models in Matlab/Simulink
environment.

The main contribution of the article is threefold. First,
an LPV control design model is developed based on a set
of LTI models obtained by linearizing the nonlinear rigid-
body model under different failed rotor speeds. Second, an
adaptive MPC design framework with control input
constraints and dynamic reference compensation is pro-
posed for studying recovery control with hovering motor
failure, and last, the adaptive MPC strategy is validated
using the nonlinear eVTOL model under motor failure
situations.

The article is organized as follows. The section LPV
Modeling Under Motor Failure reviews the nonlinear
rigid-body model for the eVTOL UAM aircraft, fol-
lowed by the LPV system model under varying equi-
librium conditions. The section Adaptive MPC
Controller Design of LPV System provides detailed

discussions of the adaptive MPC design, followed by
simulation studies in the section Simulation Results
and Discussions. Last, the Conclusion adds con-
clusions and future work.

LPV modeling under motor failure
System modeling

In this section, the aircraft dynamics under multiple
failure conditions are modeled as an LPV system ob-
tained based on the original nonlinear aircraft model?’
considering aircraft rigid-body dynamics, inertial and
gyroscopic loads, and longitudinal aerodynamics as
well as rotor kinematics and thrusts. Figure 1 shows the
modeled aircraft geometry with six rotors at 90° ori-
entation (fuselage not shown), and Table 1 lists the
model inertial parameters of rigid-body and fixed-wing
aircraft as well as its rotors. Assuming that the aircraft is
hovering at a fixed altitude with a varying propeller
speed due to partial motor failure, the six-rotor torque
(acceleration) levels are used as control input, denoted
as u; to ug. As for system outputs, besides the six degree
of freedom rigid-body linear and angular displacements
and speeds, the six propeller speeds are also used as
outputs.

First, a set of LTI state-space models are obtained by
linearizing (trimming) the nonlinear rigid-body model
at each motor failure condition. For this study, the
front-right motor (# 1 in Figure 1) is selected as the
failed one with available peak power at 100% (normal),
66%, and 33% of the power under normal hovering
condition, and the six propeller speeds are listed in Table
2. The mid-left motor (#4 in Figure 1) failure is also
studied.

The obtained LTI system matrices are formulated as
AeR™18 and B e R'**¢ defined in Table 3. The aircraft
body coordinates are defined as y, z, and x; see Figure 2.

The system output matrix C is an 18-dimensional
identity matrix, assuming all system states are mea-
surable. The system inputs, states, and outputs are
defined in Table 3. Finally, the discrete-time LTI
system models are in the form of equation (1), where i
presents the LTI model index and i = 1, 2, 3 denoting
models at 100%, 66%, and 33% available motor power,
respectively

{ Ax(k + 1) = A;Ax(k) + Bidu(k) O
Ay(k) = CAx(k)

Affine LPV system with equilibrium
condition variation

With the set of LTI models obtained by trimming the
nonlinear model at different equilibrium conditions, a di-
rect method to obtain control design LTI model is selecting
the corresponding LTI model near the current operational
condition. However, to improve the model accuracy,
a LPV modeling method is introduced.?® where an LPV
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Figure 1. Geometry of urban air mobility aircraft (top view).

Table 1. Inertial properties of urban air mobility aircraft.

Body mass (kg) Body moment of inertia (kg)

Rotor mass (kg) Rotor moment of inertia (kg)

mg I Iy ls.zc m, L Ly L=
2240.7276 12,000 9400 20,000 4.5454 35 7.0 35
Table 2. Equilibrium conditions of hovering under rotor #l failure.
Model index | 2 3
Available front-right motor power (% of normal hovering) 100% 66% 33%
Front right speed (rad/s) 100.7 87.7 69.6
Front left speed (rad/s) 100.7 106.7 1132
Mid right speed (rad/s) 100.7 106.7 1132
Mid left speed (rad/s) 100.7 106.7 113.2
Rear right speed (rad/s) 100.7 106.7 1132
Rear left speed (rad/s) 100.7 87.7 69.6

model is a linear state-space model (see below) with
coefficient matrices as an affine function of scheduling
parameter vector.

Ay(k) = CAx(k) @)

{Ax(k + 1) = A(p)Ax(k) + B(p)Au(k)

In this study, the scheduling parameter p is chosen to be

a function of the real-time failed (front-right) propeller
speed n and can be obtained by equation (3)

p(n) = 1+3{1— (n(t)/100.7)’} 3)

where p varies from 1 to 2 (2-3) when the propeller
speed is dropped from 100.7 to 87.7 rad/s (87.7—
69.6 rad/s) with 4 (p =i)=A; fori=1, 2, 3; see Table 3
for reference. Then, the system model between the
trimmed conditions can be obtained by linearly in-
terpolating the adjacent LTI models. For example, when
the aircraft is operated at a front-right failed propeller
speed n € [87.7, 100.7] rad/s, in this case, the LPV
model (2) is between the adjacent LTI models 1 and 2,
and system matrix 4(p) can be calculated based on the
adjacent trimmed model matrices 4, and 4, as A(p) =4,
+(p — 1)(4, — A4,) with p obtained by equation (3). To
handle the equilibrium condition change for trimmed
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Figure 2. Coordinate definition of urban air mobility aircraft.
Table 3. System input and output definition.
System input Order System state Order
Front right/left propeller acceleration uyluy Rigid-body velocity X1:6
Mid right/left propeller acceleration uzluy Euler angle X7.9
Rear right/left propeller acceleration us/ug Body inertial position X10:12
Propeller speed X13:18
Lateral speed (V,) ¥ Roll angle (6,) y7
Longitudinal speed (V) Y2 Pitch angle (6,) Y8
Vertical speed (V) ¥3 Yaw angle (—6,) Yo
Pitch rate (6,) 2 Lateral displacement (D,) Yio
Roll rate (0y) Vs Longitudinal displacement (D,) Yii
Opposite value of yaw rate (6,) Ye Vertical displacement (D,) Yi2

models, equation (2) is extended to the following affine
LPV model in equation (4)

x(k+1) = xo(p(k + 1) +A(p(1)) (x(k)) — xo(p(k)))
+B(p(k))u(k) — (uo(p(k)))
y(k) = Cx(k)

)

where Ax, Au, and Ay in equation (1) are presented in the
different form of system states, inputs, and outputs x(k), u(k)
and y(k) with its equilibrium conditions xq (p(k)), ug (o(k)),
and y, (p(k)). Note that variables xq (p(k)), uy (p(k)), and o
(p(k)) are linearly interpolated equilibrium conditions of the
adjacent LTI models following the same method as in-
terpolating the system matrices (see example for A(p)). It is
worth mentioning that p(k + 1) in equation (4) cannot be
directly obtained since it depends on the system response at
the next time step. Thus, it is approximated by p(k + 1) =
p(k), assuming that the equilibrium condition change from
the current step to the next is negligible with high sampling
rate (one millisecond in this study).

. 1 1v1
Au(k),. mlBH-N 1)2{ T+ N)Qelk +N) +

m:O

s.t. GAu(k + m) <

Adaptive MPC controller design of
LPV system

This section outlines the adaptive MPC scheme with
specific modifications to handle the constraints and time-
varying reference in order to reduce computational cost
and improving the system performance.

Model predictive control

Letting Ax(k) = x(k) — xo (p(k)) and Au(k) = u(k) — uo
(p(k)), state equation (4) can be converted to the fol-
lowing controller design form stated in equation (5)

Ax(k + 1) = A(p(k))Ax(k) + B(p(k))Au(k)  (5)

Defining e(k) = Ax,.r — Ax(k) for state tracking purpose,
at current time step &, the adaptive MPC controller
design'”""? is to find the constrained control input Au(k)
(over the finite horizon) that minimizes the constrained
quadratic performance index shown in equation (6)
where matrices Q > 0 and R > 0 are control design

Tk + m)Qe(k + m) + Au” (k+m)RAu(k+m)}} ©

h,m = LN —1
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weighting matrices used to penalize the state error and
control, respectively, and G transfers control input Au to
satisfy constraints 4 = u,,,, — uo derived based on the
actutation saturation u,,, and current equilibrium
condition u,. At the m-th step of the internal prediction
horizon, e(k + m), Au (k + m), and h (k + m) present the
predicted tracking error, control input, and its con-
straints. For a finite prediction horizon of N steps, the
predicted quadratic performance index stated in equa-
tion (6) can be written in a stage-wise structure in
equation (7)

! ~ TAA ~ Tpa
min > [2(k)" Qe (k) + (k) Ru(k)] 0
s.t.Gi(k) <h(k)

where é(k) = Ae(k) +Bii(k), and the transformation
matrices from equation (6) to (7) are detailed in equation (8)

other hand, a reasonable selection of tuning parameters
and a well-posed optimization problem usually deliver
stable closed-loop performance. Benefiting from the
linear interpolation of LTI models, the parameter var-
iation of prediction model between each control design
step is very small due to continuous system dynamics
and small sample period. Thus, in this study, the MPC
stability is not guaranteed in theory but demonstrated in
simulations. Closed-loop stability will be part of future
work.

Motor failure simulation with input
constraint variation

Utilizing the constraint handling ability of the MPC,
a motor failure simulation structure is introduced in this
section. First, power P needed for a propeller spinning at
speed n can be calculated by equation (10)

e(k) Au(k) R 0 0 G 0 0
oy = | EFD | magy= | AuEkFD G R |0 R 06 100G 0
e(k + N) Au(k +N —1) 0 0 R 00 .. G
1 0 0 0 ®)
¢ g ol Taw | B(p 0 0 0
0= : A= | Ap) |.B=| Alp)Blp) B(p) 0 0
0 0 0 z : : : w0
A% (p) A" (p)Blp) A (p)Blp) A" (p)B(p) ... Blp)
As a result, the reformulated optimization problem is 3 s
stated in equation (9) P=Cp,n'D (10)

min %ﬁr(k) (ie +1§TQ1§) (k) + e (k)A OBa(k)
s.t. Gu(k)<h(k) )

where 7i(k) = [AuT (k),...,Au” (k+N —1)]" is the
solved optimization control vector, that is, the optimal
solution for the problem defined by equations (5) and (6).

For real-time control at current time step £ with a mea-
sured or estimated state Ax(k), the minimization problem
described in equation (9) is solved using quadratic program
(QP) solver implemented in Matlab®® with the solution
(k) = [Au” (k+0),...,Mu"(k+ N —1)]". Instead of
only applying the first control entry at current time step k
and repeating the whole optimization process at next
time step k£ + 1, a control horizon of N, is defined, which
means that the first N, control in #(k) will be used as the
control effort between the current sample time & and sample
time k+ N, — 1, followed with the new optimization process
repeated at time k + N, — 1 to obtain the next control effort
Au (k+ N.: k+ 2N, — 1); see Ref. 30 for details.

For MPC of LPV systems, certain closed-loop system
stability can be achieved based on the theories developed
in Refs. 26, 31, and 32, which could lead to very conservative
control law with high computational complexity. On the

where C,, p,, and D denotes the power coefficient, air
density, and propeller diameter, respectively. Letting the
propeller assembly spin inertia be 7, and the propeller
acceleration be 7, the propeller spin dynamics can be
formed in equation (11)

n=(=Cp,D’n* +T)/I, (11)

where 7 is the propeller motor output torque, and term —
CpppD5 n? calculates the resistant torque at spin speed n.
By defining the resistant coefficient K = CpppDS/Ip and
the equivalent motor driven acceleration u = 7/I,, the
propeller spin dynamics can be expressed in equation
(12) due to (11)

= —Kn*+u (12)

The simulation structure for propeller motor failure is
shown in Figure 3.

Assuming that the aircraft starts under the normal
hovering condition, the motor failure occurs with a sudden
torque drop, causing a gradual propeller speed reduction
due to the fact that the motor cannot provide the desired
torque to maintain the target propeller speed. Meanwhile,
since the failed propeller speed is used to calculate the
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Figure 3. Motor failure simulation.

scheduling parameter of LPV model, the system model
parameters will be changed relatively. For example,
considering with a failed motor that can only provide »(#)%
of power with respected to the power used under normal
hovering condition, the maximum propeller driven torque
Tmax can be calculated based on equation (13)

Tonax = (Pyx () %) /n(2) (13)

where P}, is the motor power at hovering. After converting
equation (13) to the same unit of control input (dividing
the equation by the propeller—motor—rotor assembly in-
ertia 1,,), equation (14) presents the real-time MPC control
constraint, where #max = Tmax/l, can be considered as the
equivalent propeller acceleration resulted by the motor torque

Umax = (P % #(1)%) /I,n(1) (14)

After motor failure occurs under hovering condition,
the propeller acceleration 7(¢) becomes negative based on
equation (12) due to u<Kn*(#). In summary, the control
input constraints u,., =f (1, ) for MPC design need to be
updated in real-time as a function of propeller speed n(f)
and available power percentage r(f).

Dynamic reference compensation

To hold the vehicle at hovering condition, every output
reference is set to 0, which means that the control target is
to hold the system at its hovering equilibrium condition. It
was found, during calibrating the adaptive MPC con-
troller, that even though large penalization was used in the
weighting matrix on certain system outputs (including
linear speeds and angular positions), these outputs have
very slow responses, resulting in large control errors; and
sometimes, the closed-loop system is not even stable. In
theory, using a sufficient long prediction horizon will lead
to an MPC design with improved performance. However,
the computational cost will be too large to be practical for
real-time implementation.

To achieve desired system performance with feasible
computational cost, the dynamic reference compensation
method was developed with details explained below. Note
that since only incremental propeller acceleration is
controlled directly through Au generated by the adaptive
MPC, the propeller speed (or propeller thrust) responses
are slow since a significant part of control u is contributed
by u that has nothing to do with the MPC controller. To
stabilize the hovering operation, the angular speeds (such
as pitch, roll, and yaw rates) are directly affected by the
propeller thrusts. As for the longitudinal and lateral
speeds, in the hovering case without any tilting operation,
it can be controlled by manipulating the flight pitch and

roll angles to change the direction of total thrust vector
formed by all propellers. On the other side, the flight angular
position control can be achieved by setting the reference
angular speed based on the feedback angular positions with
calibratable negative gains. Last but not the least, vertical
drop under motor failure is always critical for hovering
control, and it shall be recovered and stabilized by mod-
ifying the reference vertical speed correspondingly.

In summary, instead of finding well-calibrated weighting
matrices with relative long prediction horizon, the output
weighting matrix used in the adaptive MPC control
design for flight hovering control is selected to mainly
focus on the angular and vertical speeds that are directly
affected by the control inputs. As a result, reference
angular/vertical speeds are compensated as below in
equation (15)

_Ax1 -
Axgef 0 0 0 0 0 aie AXQ
szef B 0 an 0 ary 0 0 Ax7
AX;B/ as 0 ass 0 0 0 AxS
ref
Axg 0 0 0 0 as 0]
L Axi |
15)

where Ax; i=1,2,7,8,9, 12) and Ax;ef (G=3,4,5,6)
denotes system states and their reference signals with their
definitions stated in Table 3. Observed from the simulation
results during the controller development, the smoothness
of the system response is not satisfactory after adding this
compensation. Thus, constraints have been placed on Ax
and Ax™' in equation (15), with the calculated reference
signal Ax"? filtered using a low-pass first-order filter H(s)
stated in Table 4, which improves the MPC control per-
formance significantly with a stable flight.

Framework of adaptive LPV-MPC

The closed-loop system framework is shown in Figure 4,
where Ax and Au are the controlled states and inputs
equivalent to Ax(k) and Au(¢) stated in equation (2). Based
on the real-time reference signal X% and the system state
feedback signal Ax, the MPC control generates the
optimized state feedback control effort Au that will be
combined with ug(p) (current control equilibrium) to form
system control signal u = Au + ug(p), where p is calculated
scheduling parameter based on the front-right propeller
speed n() (see equation (3)). The system model presents
the nonlinear flight dynamics with system output y.
In this study, all the system states are assumed to be
measurable due to available sensor set for the aircraft
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Table 4. Adaptive MPC controller spec parameters.

Parameter Value Parameter Value
Q. | Qp.2 |
Qa3 10002 Qu 20000?
Qs5 200002 Qs 10002
R[|:6,|:6] Ol2 X [ Step size I ms
Prediction horizon 20 steps Control horizon 4 steps
min Augy.¢ —Kn[zI 4 (t) Max Aupy.¢) —Kn[ZI » (t)+max upi¢
dig _03 an O I
dy4 —1.5 as —0.1
ass —1.5 dys —1
s.t Ax(i 2 [-5, 5] s.t Axzg) [-0.5, 0.5]
s.t Ax['z;b] [—0.03.0.03] H(s) 1/0.2s + |

Adaptive MPC

Dynami(; Rrey > = >t = aklil?;“ltir:;el
compensatlon
QP solver uo(p)
Ax A Ax |
f :
LPV P A4
controller |
design model | flp) —>X=»

Figure 4. Structure of adaptive model predictive control controller.

as y=x. And the state feedback signal Ax is calculated as
Ax = x — xo(p), which completes the closed-loop flight
control system.

Simulation Results and Discussions

The control design parameters are carefully calibrated
based on the rigid-body aircraft model response with the
simulation structure shown in Figure 4, and the detailed
control design parameters are listed in Table 4, where these
design parameters are defined in equations (6) and (15).
The simulation study was conducted using MATLAB
2019b running on a MacBook Pro equipped with
a 2.2 GHz Intel Core i7 processor, and the run-time for
a 20-s flight simulation with both adaptive MPC strategy
and nonlinear aircraft model is about 12 s, which is
considered acceptable for real-time implementation since
simulation time is shorter than actual time even with
nonlinear aircraft model included in the simulation.
First, we assumed that the available front-right motor
power failed from 100% to 33.3% (models 1 to 3 in Table
2) with stable hovering as the initial aircraft condition. For
comparing the system responses between LPV and non-
linear rigid-body models, the designed adaptive MPC
controller was used to conduct closed-loop simulations
based on both nonlinear rigid-body and LPV models,
respectively, where the simulation results are denoted by
rigid-body model and LPV model in Figure 5, re-
spectively. In this ideal failure situation, the rear-left (#6 in

Figure 1) propeller speed is synchronized with the failed
front right (FR) (#1 in Figure 1) one and the rest four
healthy propellers are operating at the same speed higher
than their normal hovering speeds to compensate the
thrust lost due to speed reduction of front-right (#1 in
Figure 1) and rear-left (#6 in Figure 1) propellers.
Benefiting from these symmetric propeller responses, the
oscillation dynamics only appears for the vertical speed;
see Figure 5 for the vertical speed and acceleration.

In both cases, the aircraft vertical speed V, and its
acceleration ¥, converge to stable condition in 5 s with
a magnitude of speed oscillation less than 0.13 m/s.
Small response difference can be observed at the be-
ginning of simulation as the maximum vertical speed
drop from the rigid-body model is slightly larger
(—0.127 m/s) than that of LPV one (—0.119 m/s). For the
rest of studies in this article, the simulations are based on
the closed-loop system performance of nonlinear rigid-
body aircraft model to make the simulation results
practical.

In practice, it is necessary to further study the control
performance under certain non-zero condition since the
aircraft could operate under non-equilibrium condition at
the same time when motor failure happens. The scenario
that UAM vehicle experience a sharp gust disturbance is
considered in this study. The gust disturbance is assumed
to generate a sudden pitch rate 0, =—-29 deg/s, leading to
the vehicle nose dipping at the beginning (0 s) of simu-
lation. Three cases are studied in this section, assuming
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Figure 6. Flight rigid-body velocity of propeller #! failure situations.

that the flight is under normally hovering initially, with
front-right motor (#1) operating under healthy condition
(100%), partially failed condition 66%, or 33% of normal
hovering power, denoted as Cases 1, 2 and 3, re-
spectively. The vehicle rigid-body velocity is shown in
Figure 6.

With an initial pitching rate of 0, =-29 deg/s shown
in top-right plot of Figure 6, the vehicle moves forward at
the very beginning with a maximum longitudinal speed V,
of 0.208, 0.213, and 0.22 m/s for Cases 1, 2, and 3, re-
spectively. Also, all three cases have very similar re-
sponses for V,, Qx, and 9}, under different available power
for motor #1. As for vertical speed V., the oscillation
magnitude is increased as case number increases from 1 to
3 due to rising motor failure severity. Last but not the least,
it can be observed that the oscillation magnitude 6"; also
goes up as case number increases from 1 to 3 with no
oscillation for Case 1. This motion is mainly affected by
the unbalanced air drag from propellers, which can be
eliminated with symmetric propeller control actuation
(see Case 1). However, under motor failure situations
(Cases 2 and 3), unsymmetric control could happen
since the six motors are operated under different available
power levels.

In order to further understand and compare the vehicle
behaviors, propeller speeds of Cases 1 and 3 are shown in

the left plot of Figure 8, where different colors present the
propeller locations (e.g., FR: front right) with solid and
dotted lines denoting Cases 1 and 3, respectively. Recall
the initial pitching-down motion caused by simulated gust
disturbance, the motion of controlled propellers can be
explained intuitively. In general, the vehicle requires
a pitch-up acceleration to recover from the initial pitching-
down motion, which can be achieved by increasing the
thrusts generated from front propellers and reducing rear
thrust. This is validated by the propeller speed responses
of Case 1 (solid line). However, due to the limited front-
right motor power in Case 3, the front-right (#1) motor
cannot provide enough thrust to balance the vehicle,
leading to increasing middle two propeller efforts (MR: #3
and ML: #4). As the failure gets severe, except the failed
front-right propeller and its central symmetry one (RL:
#6), all other propeller speeds increases correspondingly,
with the highest speed for the front-left (FL: #2) one. Last,
the failed front-right propeller speed is slightly varying
between 3 and 6 s to balance the vehicle yaw motion,
indicating the significance of coordinated control even
under failed condition. In summary, the adaptive MPC
controller is able to stabilize the vehicle in 10 s for all three
failure cases.

Noting that the failure study for propeller #1, #2, #5, or
#6 is the same since their locations are symmetric; see



1404

Proc IMechE Part G: | Aerospace Engineering 236(7)

Figure 1. However, to validate the overall control per-
formance with all possible single motor failure, the failure
study of propeller #3 or #4 becomes necessary since its
failure is different from that of propeller #1. As a result,
propeller #4 is selected for failure study with the equi-
librium conditions same as propeller #1 at 100% and 33%
available power of normal hovering condition. The same
adaptive MPC (see Table 4 for control design parameters),
used in the propeller #1 failure study, is used for propeller
#4 failure study, where 33% is the available power for the
failed #4 motor with initial conditions 6, = —2.9 deg/s,

éx = —4.64 deg/s, and 0= —2‘99)( + —2.9[9), deg/s for
Cases 4, 5, and 6, respectively.

The rigid-body velocities are shown in Figure 7. In
general, the trends and characteristics of responses are
similar to Cases 1, 2, and 3. It is worth mentioning that for
Cases 4 and 5 with initial pitch motion, the oscillations of
roll and yaw angles are eliminated compared with Cases 2
and 3, which benefits from the symmetric responses of left
and right propellers. Propeller speeds are also shown in the
right plot of Figure 8, where the highest speed occurs at the
front-left propeller that generates the most efficient thrust

m/s

Ve,

0.2

V,, m/s

m/s

vz,

4 6

Time, s

Time, s

Figure 7. Flight rigid-body velocity of propeller #4 failure situations.
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Figure 8. Speed of propellers of Case #|#3 (left) and #6 (right).
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Figure 9. Rigid-body velocity comparison of AMPC and MPC.

Note: AMPC: adaptive model predictive control; MPC: model predictive control.
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for recovering the joint motion of the initial pitch and roll
disturbance.

In order to validate the capability of proposed
adaptive MPC, a normal MPC was designed and its
design weighting is optimized based on the model with
healthy motors (system at p = 1) with the same reference
dynamic compensation and motor failure constraints as
these for Case 3. Note that u in the comparison simu-
lations is the same and scheduled by p calculated from
failed propeller speed n, but Au is different since Au from
the conventional MPC is designed based on the LTI
system at p = 1 and Au from the adaptive MPC is based on
the LPV model with p varying from 1 to 3. Assuming that
both failure situations are the same as Case 3, that is, the
initial pitching speed is 6, = —2.9 deg/s with 33% of
normal hovering power available for the front-right
(FR #1) motor, the rigid-body velocities are shown in
Figure 9.

7~ ™
115 '.ﬁ\.v',-,,,, P R Ll T
o
110 !f - - i — =-FR-AMPC
i - =FL-AMPC
105‘:! 118 — =MR-AMPC
@ 100l 116 ML-AMPC
= g — =RR-AMPC
2 o - =RL-AMPC
= |‘ LR /7 A R S T S FR-MPC
g ot MWM———— .. FL-MPC
& 857\_ ----- MR-MPC
i ML-MPC
ol b
. v | ] e ]
Wi, ol
70 \."" LSS ——— L ok T
0 2 4 6 8 10
Time, s

Figure 10. Speed of propellers comparison of AMPC and
MPC. Note: MPC: model predictive control.

Table 5. RMSE of simulation results.

It is obvious that flight speed oscillations are smaller in
all x, y, and z directions under adaptive MPC. The angular
speeds are shown in the right plot of Figure 9 with the
related reference signal also plotted in dotted- and dashed-
lines for adaptive and normal MPC, respectively. The
angular speeds approach their reference signals under both
control strategies, and reference signals are also gradually
converging to zero. The most significant difference is
shown in pitch rate [9y, where relatively large oscillation
can be observed for the conventional MPC. This is due
to the fast initial propeller failure response, as variation
control signal u = uy + Au is dominated by u, leading to
very similar responses in both cases. However, after
0.9 s, variation of u, becomes small and Au dominates
the control gradually. In the conventional MPC, the
system model used in control design is not able to
capture the aircraft dynamics variation caused by the
failure but adaptive MPC does, which leads to the larger
oscillation in éy.

The propeller speed responses are also shown in Figure
10. It can be observed that the speed trajectories of failed
front-right (FR: #1) propeller and symmetric rear-left (RL:
#6) one are the same for both cases at the beginning since
it is a natural process due to insufficient propeller driven
torques. As for the other four propellers, the magnified
region shows the start of propeller speeds deviations
between adaptive and conventional MPC, since Au takes
over the control as discussed above, leading to different
recovering responses. Especially the adaptive MPC
strategy leads to a much smaller roll rate oscillation.

In summary, the designed adaptive MPC is able to
stabilize the aircraft under possible propeller failure cases
with different failure percentages, propeller locations, and
initial disturbances. Also, the adaptive MPC improves the
closed-loop system performance since the LPV model
used for MPC design varies based on the real-time flight
condition, which reduces the modeling error between the
control design model and the actual physical system. Last,

Case #1 #2 #3 (AMPC) #3 (MPC) #4 #5 #6

Failed propeller N/A FR FR ML ML ML
Available power N/A 66% 33% 33% 33% 33% 33%
Direction of disturbance 9,( QX 7 éx 9,( [9)( €’X and [9,
Magnitude of disturbance (deg/s) -29 -29 —-29 -29 -29 —4.64 —2.9 and —-2.9
Peak power rotor position FL/FR FL FL FL/FR FR/RL FL
Peak motor power (%) 108.9% 131.4% 158.1% 158.1% 154.0% 154.4% 156.0%
Vi 0 0.0010 0.0015 0.0108 0 0 0.0917
vy 0.0913 0.0933 0.0968 0.1003 0.0937 0.3170 0.0952
v, 0 0.0124 0.0283 0.0301 0.0228 0.0233 0.0237
0y 0.5800 0.5870 0.5962 0.5814 0.5873 1.0650 0.5902
@)y 0 0.0044 0.0063 0.1308 0 0 0.5903
é, 0 0.2031 0.3041 0.2791 0 0 0.1609
Sum 0.6720 0.9013 1.0333 1.1325 0.7038 1.4054 1.5520

Note: RMSE: root mean square error; FR: front right; MPC: model predictive control.
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the root mean square error (RMSE) of all studied cases are
summarized in Table 5 with zero references.

Conclusion

This article applies the adaptive MPC scheme to hovering
control under propeller motor failure for a six-rotor eVTOL
UAM vehicle. The nonlinear rigid-body vehicle system
model, developed earlier, is linearized under different failed
propeller speeds for a given motor failure percentage to
generate a set of LTI models for MPC design. A LPV model
is developed based on the set of obtained LTI models and
used for adaptive MPC strategy. The time-varying power
constraints of propeller motors are considered in control
design, and dynamic reference compensation is also used to
improve the vehicle recovery performance with reduced
computational cost. The simulation results show that the
designed adaptive MPC controller is able to stabilize the
vehicle under all single motor failure cases, and the overall
RMSE of'the vehicle rigid-body velocity oscillations can be
significantly reduced using the adaptive MPC by 8.77%
compared with conventional MPC. The future work is to
study the vehicle tilting transition control using the adaptive
LPV-MPC framework.
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