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Co-design of active vibration control and
optimal sensor and actuator placement for
a flexible wing using reinforcement learning

Tianyi He1 and Weihua Su2

Abstract
This paper presents applying reinforcement learning to find the optimal sensor/actuator placement (OSAP) policy and
optimal control for the flexible wing. The “co-design” objective is to find the OSAP and its associate controller to render
the optimal closed-loop performance. The nonlinear vibration dynamics of the flexible wing are modeled in the linear
parameter varying (LPV) approach so that LPV-H∞ controllers can be designed. The co-design problem is formulated into
mixed-integer semi-definite programming (MISDP). As a special form of combinatorial optimization, MIDSP solves integer
optimization for sensor/actuator selection and convex optimization for controller design. A modified reinforcement
learning algorithm is applied to solve this NP-hard optimization problem and obtain a converged solution. In addition, RL is
compared with the greedy algorithm and genetic algorithm to demonstrate its strengths and drawbacks in solving high-
dimensional MISDP. The solutions obtained by RL and the greedy algorithm are verified and compared in the high-fidelity
simulation with the full-order model.
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Introduction

The flexible aircraft wing has been recognized as
a promising design for high-altitude long-endurance
(HALE) aircraft. Its flexible structure results in high
aerodynamic performance and improved fuel efficiency
but leads to reduced stability margin at the same time.1–3

Under the same flight condition, the flutter is more severe
than that of the traditional rigid wings. Therefore, active
vibration control is essential for suppressing flutters to
avoid structural failure and increase the flexible wing’s
flight stability margin.4,5

Early research revealed that the vibrations on a flexible
wing are nonlinear and parameter-dependent on flight
condition.1 One challenge of designing a gust alleviation
system is that sensor and actuator selections are not in-
dependent of the control design. The placements of
sensors and actuators determine the controller complexity
and the best achievable closed-loop performance. How-
ever, the sensor/actuator placement is designed tradi-
tionally by heuristic methods, which are rarely considered
together with controller synthesis. Consequently, the
control system will only lead to sub-optimal closed-loop
performance, and the deviation from optimum is not
guaranteed. Another challenge is the instability of the

flexible wing. When flight speed is beyond a certain value,
the vibration mode will change from stable to unstable.
Therefore, a systematic method is needed to co-design the
optimal sensor/actuator placement (OSAP) and the active
controller to achieve optimal closed-loop performance.
For the flexible wing, the co-design of OSAP and gain-
scheduling control is still an open problem.

One of the most straightforward strategies is to place
sensors and actuators to avoid right half-plane zeros.6 The
reason is that the unstable zeros will limit the bandwidth of
control inputs and consequently limit the closed-loop
performance.7 Quantitative measures of the transfer
function, for example, the singular value8 and the con-
dition number,7 can be optimized. But optimizing these
frequency-dependent functions is not efficient for large-
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scale input–output systems. For LTI systems in the state-
space representation, quantitative measures, often linked
with time-domain physical meanings, can be formulated
and optimized more easily. The optimization-based
methods in the literature can be categorized by ob-
jectives and searching methods.

The most common quantitative measure for open-loop
stable LTI systems is related to the state controllability
Gramian (Wc) and observability Gramian (Wo). The sensor
and actuators are selected to maximize the minimum ei-
genvalue of Wc and Wo, such that the input energy is
minimized and output energy is maximized.9,10 Other
measures include determinants of Wc and Wo and recip-
rocals of traceðW�1

c Þ and traceðW�1
o Þ.11,12 These Gramian

measures require the system to be open-loop stable.
However, it is a challenge to quickly solve the Gramians
for a high-dimensional system and parameter (time)-
varying system. One exception is when the damping
coefficient is small enough such that the Gramian can be
approximated to diagonal, and the dominating sensors/
actuators can be easily selected.13 When the system is
subject to external disturbance, H2 and H∞ norms of the
closed-loop system are adopted as objectives.14,15 The
effective independence (EFI) method16 selects measure-
ment locations that make the mode shapes as linearly
independent as possible. This method is equivalent to the
minimization of the condition number of the information
matrix.17

The optimization-based approach treats the sensors and
actuators as discrete variables, and the nature of OSAP is
a combinatorial optimization (CO) problem.18 The
methods used to solve this NP-hard problem fall into four
groups: (1) exact methods, (2) relaxation-based convex
optimization, (3) heuristic methods, and (4) learning-
based methods.

Exact optimal solutions can be obtained by enumer-
ating or using branch-and-bound.19 However, this ap-
proach is only limited to small-size problems. The
relaxation-based methods find an approximate solution
by relaxing optimization in discrete space to continuous
space. For instance, the binary variable f0; 1g can be
relaxed to continuous variable ½0; 1�, and the final solution
is the nearest integer rounded from the solution of convex
optimization.20 However, those approximate solutions
deviate from the optimum, and the deviation error bound is
not guaranteed.

Heuristic methods produce solutions that are not guar-
anteed to be optimal but in an efficient manner. If the
objective functions are submodular, then the greedy al-
gorithm can reach a near-global-optimal solution by taking
local optimal steps.21 However, the submodular property is
a strict requirement and needs carefully checking of ob-
jective functions. Jawaid and Smith (2015)21 gave some
counterexamples that overturned proven submodular
functions. The genetic algorithm (GA)22 can solve OSAP
effectively. These heuristic methods provide a practical and
fast approach, but a heuristic naturally requires prior ex-
perience, and heuristic tricks influence the search algo-
rithm’s complexity and performance.

Learning-based methods, especially reinforcement
learning (RL), are successfully applied to solve CO re-
cently.23,24 The learning-based methods actively learn and
improve the heuristic in an iterative manner. The RL agent
can automatically learn the optimal policy by interacting
with an initially unknown environment, collecting the
reward, and updating the policy. In Cappart et al. (2019),25

the RL is used to solve the maximum independent set
problem. Kasper et al. (2015)26 proposes a machine
learning–based algorithm of constrained sensor placement
to recover a high-dimensional field from a finite number of
local measurements with a linear estimator. Reinforcement
learning is applied in the spatial domain for modeling
distributed parameter systems, and the feasibility and
efficiency are demonstrated by experimental results in
Wang et al. (2019).27 Those studies reveal the possibility
of using the RL algorithm to tackle the co-design of OSAP
and control for the flexible wing. The reduced require-
ments on the model make the RL application scope wider
than these traditional methods in the literature.

In this paper, the co-design of OSAP and active control
for the highly nonlinear flexible wing is solved by RL to
achieve optimal vibration suppression against external
disturbance. The placements of sensors and actuators are
formulated to discrete optimization to select from a set of
available sensors and actuators locations. The nonlinear and
parameter-dependent properties of the vibration dynamics
are described by a linear parameter-varying (LPV) model
that is a polynomially parameter-dependent system. TheH∞

norm is used to evaluate the closed-loop performance by
suppressing vibrations excited by external disturbance. The
co-design problem is formulated as a mixed-integer semi-
definite programming (MISDP), which is a combinatorial
(hybrid) optimization problem with integer variables and
real matrix-valued variables. Integer variables describe the
sensor/actuator selection from a given set, and real matrix-
valued variables determine the controller which achieves
optimal H∞ performance.

The CO problem is then solved using a modified RL to
obtain the convergent solution. The convergent solution is
given and verified for a flexible wing model. The RL-
based method is then compared with the greedy algorithm
(heuristic) to demonstrate the improved gust alleviation
performance by the high-fidelity simulation results.

The main contributions of this paper are two-fold:

(1) Formulating the co-design problem of LPV control
with input constraints and sensor/actuator placement,
into a combinatorial optimization for the flexible
wing. The gust alleviation of flexible wing is the
objective to be optimized jointly by control variables
and sensor/actuator integer variables.

(2) Using the reinforcement learning method to solve the
mixed-integer semi-definite programming and veri-
fying the optimal “co-design” in high-fidelity simu-
lation. The combinatorial optimization consists of
nonlinearity introduced by the parameter-dependent
polynomials and discrete variables for sensor/
actuator placement.
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The rest of this paper is organized as follows. Firstly,
the basics of linear parameter varying (LPV) modeling and
LPV controller synthesis of the flexible wing are provided,
and then, the co-design problem is formulated into a CO
problem. After that, the RL algorithm is applied to the co-
design problem, and then, optimization solutions and
verification are shown to demonstrate the effectiveness.
The comparison results of RL with other methods are then
given and discussed. At last, conclusions are made. The
following notations are used in this paper. |S| denotes the
cardinality of a set S, and S \ sk denotes removing an
element sk from S. The vertices of a polytope Θ are de-
noted by ver(Θ). A positive definite matrixM is written as
M > 0 and hMi = M + MT.

Problem formulation

LPV model of nonlinear aeroelasticity of
a flexible wing

Figure 1 presents the schematic diagram of the blended-
wing-body (BWB) aircraft with flexible wings. The
modeling and control of the flexible wing have been re-
ported in previous work. Su and Cesnik (2010)1 developed
the nonlinear aeroelastic model of the flexible wing, Ji-
boory et al. (2017)28 derived a reduced-order LPV model,
and He et al. (2017)29,30 developed the LPV controllers.
The LPV modeling process mainly consists of four steps.
In the first step, the wing is gridded into a finite number of
beam elements, and the nonlinear aeroelastic model is
developed. The second step is to linearize the nonlinear
model at gridded flight speeds and conduct coordinate
transformation to the modal form. As a result, a series of
LTI full-order models (FOMs) are obtained. The third step
is to align the vibration modes to depict the evolution of
vibration modes so that model reduction can be performed
by keeping the most significant modes.28 In the last step,
the evolution of modal LTI models is interpolated into
a polynomial parameter-dependent LPV model.

Each wing of the BWB aircraft is gridded into 12 beam
elements, and the inner nine elements at each wing are
locations where control surfaces can be placed, labeled as
U1 – U9. The vertical displacements at the equally spaced
locations along the wingspan are selected as performance
outputs that reflect the vibration behaviors of the entire
wing. The open-loop nonlinear and linearized flight dy-
namic and aeroelastic models were created by following
the work,1 where the nonlinear aeroelastic formulation
was developed based on a strain-based geometrically
nonlinear beam theory.31 The beam theory is geo-
metrically exact, considering the composite cross-
sectional properties that can be obtained using the vari-
ational asymptotic approach.32 Due to the symmetry, only
the right-side wing is considered.

The aircraft is assumed to cruise at 10,000 feet with
a flight speed θ from 80 to 130 m/s. At gridded flight
speeds with an increment of 0.5 m/s, the nonlinear
structure vibration behaviors are analyzed in the modal

coordinate. The system matrices at the gridded point take
the form of modal coordinates. Each of the mode consists
of a pair of conjugate eigenvalues αi ± jβi, i = 1, 2, …, 6.
Only six dominant modes remained in the reduced-order
model, marked as M1-M6, and the physical meaning of
each mode is explained in Table 1. The eigenvalue so-
lution yields coupled modes, where each mode consists of
elastic, flight dynamic (rigid body), and aerodynamic
components. It’s worth mentioning that, from the analysis
of obtained eigenvectors, there does not exist the mode of
first anti-symmetric out-of-plane bending of the wing
coupled with rigid-body roll. However, the modeling
approach does not exclude such a fundamental mode if it
exists in other different aircraft models.

The evolution of each mode relative to varying flight
speed is plotted by the gray triangles in Figure 2. At a flight
speed of 115 m/s, the mode M1 becomes unstable. The
evolutionary trajectories of these vibration modes clearly
show the nonlinear dependency on varying flight speeds.
Thus, a polynomial LPV model is used to describe the
nonlinear dependence on the varying parameter (flight
speed).

Considering the scenario that the flexible wing is
perturbed by gust disturbance and measurement noises,
the LPV model in (1) describes the perturbed system

_xpðtÞ ¼ AðθÞxpðtÞ þ BwðθÞwðtÞ þ B2ðθÞuðtÞ
zðtÞ ¼ C1ðθÞxpðtÞ þ D12ðθÞuðtÞ
yðtÞ ¼ CyðθÞxpðtÞ þ vðtÞ

(1)

where θ(t) denotes the scheduling parameter, that is, flight
speed, xp(t) denotes the model state, and u(t) are the
deflection angles of control surfaces installed at selected
locations; z(t) are the controlled outputs that consist of
weighted control inputs and vertical bending displace-
ments at all locations; and y(t) are the measurements from
installed sensors at selected locations. The measurement
noise v(t) is assumed to be zero-mean, Gaussian white
noise, EfvðsÞvT ðtÞg ¼ Vδðt � sÞ, and w(t) is the external
disturbance exciting the vibrations, for example, the gust
disturbance.

Because the nonlinear dependency on flight speed is
approximated to polynomial, the system matrices are in
the second-order polynomial parameter-dependent form in
(2). The LPVmatrices A(θ) are explained in Appendix and
are available to download in the url link1

AðθðtÞÞ ¼ A0 þ A1θðtÞ þ A2θ
2ðtÞ: (2)

Figure 1. Schematic layout of BWB airplane configuration.
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The bounds of pair ðθ, _θÞ are represented as

θ2Θ ¼ �
θ ≤ θðtÞ ≤ θ�,

_θ2Λ ¼ ��νθ ≤ _θðtÞ ≤ νθ
�
:

(3)

There are two benefits resulting from using the poly-
nomial parameter-dependent form. Firstly, the polynomial
function can more accurately capture the nonlinear de-
pendency on varying speeds rather than linear polytopic
representation. The matrices A0, A1, and A2 are easy to be
computed from least-square regression. Secondly, the
polynomial parameter dependency renders LMI charac-
terizations of controller synthesis over polynomials.
Available optimization tools can solve LMIs efficiently to
synthesize the controllers.33

Sensor and actuator selection by projection

As shown in Figure 3, the sensor location candidates are
marked by red squares, and they are equally spaced on the
wingspan. The actuator location candidates are marked by
blue parallelograms. yðtÞ denote measurement signals from
all candidates yðtÞ ¼ ½y1ðtÞ, y2ðtÞ,…, ym1ðtÞ,…, yM1ðtÞ�,
whereM1 is the total number of sensor location candidates.
N1 ≤ M1 number of the sensor locations are selected to
install sensors to obtain the actual measurement y(t). In
practice, the sensors and actuators are often installed
symmetrically, so the symmetric selection is adopted for
both sides. Since there are 12 gridded elements in total on
the right wing, it is assumed that the available measurement

locations are the edge points indicated by the red square.
The total number of sensor placements is 13. The inner 9
elements are assumed to be the candidate locations for the
flaps (control surfaces), so the total number of actuators’
installation places is 9.

The projection operation produces sensor selection
from the entire set of available measurements to the se-
lected measurement subset. The projection operator is
denoted by Py :RM11RN1, leading to y ¼ Pyy.

Each of the sensor locations is represented by an in-
teger. Then, selecting N1 number of sensors is equivalent
to forming the set Sy by selecting N1 number of integer
variables from the set Sy ¼ f1; 2,…,M1g.

Similarly, selecting N2 ≤ M2 number of actuator can-
didates from the entire set ofM2 locations is realized by the
projection operatorPu :RM21RN2, which leads to u ¼ Puu.
Then, selecting N2 number of sensors is mathematically
equivalent to forming the set Su by selecting N2 number of
integer variables from the set Su ¼ f1; 2,…,M2g.

For example, selecting u1 and u2 from the set
fu1, u2, u3g is realized by the projection, where the cor-
responding element of selected integer variable is 1, and

unselected are 0. Therefore,

�
u1
u2

�
¼ 1 0 0

0 1 0

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Pu

24 u1
u2
u3

35.
The input matrix B is projected from the initial input

matrix B2 by the projection matrix PT
u

Table 1. Mode description in the reduced-order model.

Mode ID Rigid body Flexible Note

M1 Plunge and pitch 1st symmetric out-of-plane bending Bending/torsion coupling

M2 Plunge and pitch 2nd symmetric out-of-plane bending Bending/torsion coupling
M3 Plunge and pitch 1st symmetric in-plane bending Bending/torsion coupling

M4 Roll 2nd anti-symmetric out-of-plane bending Bending/torsion coupling
M5 — 1st anti-symmetric in-plane bending Bending/torsion coupling
M6 — — Aerodynamic dominant mode

Figure 2. Root loci of open-loop vibration modes with
varying flight speed, color bar: 80–130 m/s.

Figure 3. Sensor and actuator candidate locations, red:
sensors candidate locations labeled from left to right as y1 to y13,
blue: actuators (flaps) candidate locations, labeled from left to
right as U1 to U9.
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b11 b12
b21 b22

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

B2

¼ b11 b12 b13
b21 b22 b23

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

B2

1 0
0 1
0 0

24 35
|fflfflfflfflffl{zfflfflfflfflffl}

PT
u

(4)

The bending displacements at all equally spaced lo-
cations are put in the performance output z(t) so that the
overall wingspan’s vibrations are considered. Besides, the
weighted control inputs by Wu are included to avoid the
singular problem. The disturbance perturbs the system by
D12 ¼ D12PT

u ,D21 ¼ PyD21. Therefore, the system with
the projection operator is expressed in equation (5), where
the parameter dependency is omitted

A B1 B2

C1 D11 D12

C2 D21 D22

24 35¼

A Bw 0½ � B2P
T
u

Cy

0

� �
0

0

WuP
T
u

� �
PyCy Py 0 V½ � 0

26664
37775 (5)

Using the selected sensor measurements and control
surfaces, the dynamic output-feedback (DOF) LPV con-
troller K(θ) in (6) is to be designed

KðθÞ :
(

_xK ¼ AKðθÞxK þ BKðθÞy
u ¼ CKðθÞxK

(6)

The closed-loop system matrices are thus derived as

�
Acl Bcl

Ccl Dcl

�
¼

A

BkPyCy

B2P
T
u CK

AK

B1

BKD21

Cy 0 0

0 WuPT
u Ck 0

266664
377775 (7)

LPV controller synthesis conditions

The H∞ performance is to assess the closed-loop system
robustness in suppressing external disturbance. Mathe-
matically, let T∞ denote the transfer function from external
disturbance w(t) to performance output z(t), and kT∞k∞ is

the H∞ norm of T∞. Then, the H∞ performance for (w(t),
z(t)) pair is defined as

kT∞k∞ ¼ sup
w, z2l2, kwk2 ≠ 0

kzðtÞk2
kwðtÞk2

: (8)

With projections Pu and Py, the following Theorem 1
provides the controller synthesis conditions for the H∞

LPV DOF controller.

Theorem 1. For the LPV system (5), the gain-
scheduling controller (12) minimizes the closed-loop
H∞ performance index in (9)

min
X , Y , bAK , bBK , bCK , bDK

γ (9)

if there exist parameter-dependent positive definite ma-
trices X and Y, and parameter-dependent controller
variables bAK, bBK, and bCK such that (10)–(11) hold for any
ðθ, _θÞ 2 verðΘ ×ΛÞ. The gain-scheduling controllercan be
reconstructed as (12)

264Uk ekbCK 0
� X I
� I Y

375 > 0, k ¼ 1; 2,…,N2: (11)

8>><>>:
AK¼ðNÞ�1

�bAK�YAX�bBKCyX�YB2
bCK

�
ðMÞ�T

BK¼N�1bBK

CK¼bCKðMÞ�T

(12)
Remark 1. The proof is omitted and the detailed proof can
be found in references.34,29 In the controller reconstruction,
the _θ dependency in the controller can be eliminated, with
introduced conservativeness, by setting either X or Y as
a constant matrix.34 In addition, the variables bAK, bBK, bCK,bDK ,andYare also assumed in the second-order polynomial
parameter-dependent form. For example, bAKðθÞ is ex-
pressed as bAKðθÞ ¼ bAK0 þ bAK1θ þ bAK1θ

2. Therefore,

� _Xþ�
AXþB2P

T
u
bCK

� � � �
bAKþAT _Yþ�

YAþbBKPyCy

� � �

BT
1

	
YB1þbBKPyD21



T � γI �

C1XþD12P
T
u
bCK C1 D11 � γI

2666666664

3777777775
<0 (10)
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variables ðbAKi, bBKi, bCKi, Yi,X0Þ, i=0, 1, 2, are to be sought
to determine the controller that minimizes the closed-loop
performance. This semi-definite program (SDP) is a convex
optimization problem and it can be effectively solved using
the parser ROLMIP,33 YALMIP,35 and the solver
SEDUMI.36

Remark 2. One can easily transform the set of integer
variables to the set of binary variables. For example,
selecting integer f1; 2g from the set f1; 2; 3g is same as
setting binary variables s1 = 1, s2 = 1, s3 = 0 in the set
fs1, s2, s3g. Therefore, the mixed-integer SDP can be
transformed into a mixed-binary SDP.

Co-design as a combinatorial optimization

In the co-design of optimal sensor and actuator placement
and optimal control, the sensor/actuator set and controller
matrices are simultaneously sought to minimize the
closed-loop performance. Therefore, the co-design
problem is formulated as an optimization problem (13)

min
jSyj¼N1, jSuj¼N2
Sy ⊂ Sy , Su ⊂ Su

min	bAK , bBK , bCK , bDK , Y ,X

γ (13)

subject to LMIs (10) and (11) for ðθ, _θÞ 2 verðΘ ×ΛÞ.
The optimization problem is now formulated as MISDP,

a special type of CO. This CO problem is well-known as an
NP-hard problem, which involves integer optimization for
sensor/actuator selection and convex optimization for con-
troller synthesis. The optimization complexity increases
exponentially with the number of available sensors and
actuators. The traditional searching algorithm is either in-
efficient or leads to a loss of optimality. Firstly, this complex
CO cannot be directly solved by the traditional methods, like
the gradient method, unless the discrete variables are relaxed
to be continuous. The optimality may be sacrificed due to the
relaxation. Secondly, even after relaxation, the resulting co-
design optimization is still a non-convex optimization
problem due to the coupling terms by sensor/actuator var-
iables and controller variables. See LMI in (10), (11) for the
non-convexity due to coupling between ðbAK , bBK , bCKÞ and
(Pu, Py). The optimization algorithms are often not efficient
in solving high-dimensional non-convex problems. For
example, the reduced-order model of the flexible wing has
a dimension of 12, and it has 13 outputs and 9 inputs.
Therefore, the LMI in Theorem 1 has 22 binary variables
and 1380 continuous variables. The relaxation-based
method will solve a non-convex problem with around
1400 variables and with nonlinear coupling between vari-
ables. The algorithm efficiency and global optimum are
challenging to achieve. Therefore, the RL is used to tackle
the resulting CO and search for a fast convergent solution.

Solving combinatorial optimization by
reinforcement learning

Combinatorial optimization has experienced boosting
progress from the success of RL and more broadly machine
learning. The basic idea is iteratively learning useful

heuristics.23 The RL algorithm starts from an initial policy,
learns from a policy’s rewards, and improves the policy
iteratively. Compared to the relaxation-based optimization,
there is no introduced conservatism by relaxations. Com-
pared to other stationary heuristic methods like the greedy
algorithm, the RL has an adaptive heuristic strategy to obtain
improved solutions over the static heuristic methods. This
section will show how the RL technique is specifically
applied to solve the co-design problem.

MDP of selecting sensors and actuators

RL is usually described as a Markov decision process
(MDP). One sequence of MDP consists of basic elements
ðs, a, s0 , rÞ, where s is the current state, a is the action, s0 is
the next state, and r is the immediate reward. States s, s0

belong to the set of states S. The action a belongs to the set
of actions A. The transition model Pa(s, s0) determines the
next state s0 from the current state s under the action a. The
reward model Ra(s, s0) determines the immediate reward r
after state transition from s to s0 under the action a.

The search process for optimal sensor and actuator
placement is a deterministic MDP. The state s represents the
current sensor/actuator selection, equivalently, the set of se-
lected integer variables. Starting from an initial state that selects
all sensors and actuators, the action a is to remove one sensor/
actuator from the selected set. s0 is the new selected sensor/
actuator locations. The future state s0 is independent of history
states and only depends on the current state and action.
Therefore, this process satisfies the Markov property, and the
state transition model Pa(s, s0) is deterministic. The reward r is
the optimal closed-loop performance using the selected sensors
and actuators, which is unknown until executing the controller
synthesis. Therefore, the reward model is not priorly known.
The state value function v(s) evaluates how good a state is, in
terms of the best achievable closed-loop performance. The
simple tabular method is used for the state value function. The
iterations on the state value function carry out the search
process for the optimal placement policy until convergence.
With enough iterations of exploration, the global optimum can
be achieved.37 Because no relaxations or approximations are
used, the optimality is not lost. However, it is worthmentioning
that the tabular method needs a large space of states for the co-
design problem due to the high-dimensional system. An al-
ternative approach to implementing state value function is to
use function approximations or neural network,38 and different
policy search methods can be used.

RL-based optimization

The state set consists of all the combinations by selecting N1

out of M1 sensors and N2 out of M2 actuators. The size of the
state set is calculated by combinations C(N1,M1) � C(N2,M2).
The set of actions for each state can be easily formed by
unselected sensors and actuators, which is of size (N1+N2) �
(M1�N1+M2�N2). Due to the high number of states and lack
of a reward model, the model-free RL technique temporal
difference (TD) learning is used. In this way, storing the
transition and rewardmodels is avoided.Moreover, it is proven
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that the TD update rule can approximate the maximum
likelihood of the optimal state value function when performed
on finite data and infinite repeated updating.37

Algorithm I describes the RL approach to solve the
MISDP. Step 1 initializes the learning parameters. At Step
2, the ε-greedy method in (14) is used to determine the
action at at each time step t. Step 3 then evaluates the next
state and collects rewards. The immediate reward r is se-
lected as the negative value of the best achievable H∞

performance, which is calculated from performing the
controller synthesis using Theorem 1. If the selected sensors
and actuators render an uncontrollable or unobservable
system, then the reward is set to be negative infinite. If the
new state is visited and included in the state value table, the
reward is directly obtained from the table. Step 4 updates
the state value function by the TD update rule.

As shown in (14), the ε-greedy method selects a random
action with the probability ε and determines the action to
maximal value with the probability 1 � ε. This approach
provides a trade-off between exploration and exploitation,
in other words, a balance of enabling fast convergence and
avoiding local maximum. On the contrary, the greedy al-
gorithm is likely to render sub-optimal solutions because it
takes a local optimal action amaxt at each step.

πðatjstÞ¼
(
1� εþ ε=jAðstÞj, if a¼ arg max

a2AðstÞ,s02S
v
	
s0



ε=jAðstÞj,otherwise
(14)

Results and verification

The total numbers of available sensors and actuators are
M1 = 13, M2 = 9, and two selection cases are considered.
The first case is to select N1 = 9 sensors and N2 = 6 ac-
tuators, respectively. The second case is to select fewer
sensors and actuators N1 = 6, N2 = 4. The sizes of state sets
in two cases are C(13, 9) � C(9, 6) = 60060 and C(13, 6) �
C(9, 4) = 216216. The state sets are too large to use
exhaust search. The bound of scheduling parameter is
θ2Θ ¼ f80 ≤ θðtÞ ≤ 130g, _θ2Λ ¼ f � 1 ≤ _θðtÞ ≤ 1g. The
weighting factor is Wu ¼ 100 � IM2, and the variance
matrix of process disturbance and gust disturbance are
both scaled to 0.01 �I.

The RL approach is implemented according to Algo-
rithm I. The learning parameters in Step 1 are initialized:
Discount rate γd = 0.5, learning rate α = 0.9, exploration
probability ε = 1, and decays in each episode at the rate
εd = 0.95. The maximum action steps tmax in each episode
is M1�N1+M2�N2 and maximum episode until termi-
nation is Nmax

e ¼ 100.
Because RL involves random exploration actions in

the epsilon-greedy algorithm, the RL is repeated 10
times to explicitly show the average capability and
robustness. The best, worst, and mean rewards earned in
10 trials are shown in Figures 4 and 5. Converged
solutions can be obtained by TD learning around 10–30
episodes. The optimal sensor and actuator selections
and optimal closed-loop performances are summarized
in Table 2.

One of the heuristic methods, the greedy algorithm,39 is
compared with RL in solving the discrete optimization.
The greedy algorithm is well-known to take local optimal
steps and has polynomial time efficiency to arrive at
convergence. It has been proved that the algorithm ach-
ieves a sub-optimal solution within (1 � [1/e]) of the
optimum.40

The selected set is initialized as the set consisting of
all sensors and actuators. In each episode, one sensor or
actuator is removed greedily and the removal operations
are repeated until reaching the expected number of
sensors and actuators. The controllability and observ-
ability of each sensor/actuator combination need to be
checked, and the performance is set to be infinity if not
observable and/or not controllable. The results are
presented in Figures 6 and 7. Table 3 summarizes the
selected sensors, actuators, and optimized closed-loop
performance.

For the case of N1 = 9, N2 = 6, the greedy algorithm
renders the same solution as TD learning. The sensors and
actuators near the wing tip are selected because the vi-
brations near the wing root are less severe than those in
other regions on the wing span. Both algorithms will lead
to optimal solutions if only very few actions and decisions
are sought. In this case, the greedy algorithm has less
computation complexity and needs less computational
time to obtain a solution.

On the other hand, the greedy algorithm renders
a worse solution than TD learning, in the case of N1 = 6,
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N2 = 4. More decisions are included in determining the
optimal action sequence. If the set function doesn’t
satisfy the submodular property, then greedy action at
each step will surely deviate from the global optimal
solution. TD learning, on the contrary, avoids the local
optima, by ε-greedy search and TD updating. If enough
iterations are conducted, the solution will converge to the
global optima.

This result matches with the expected advantage of
ε-greedy in RL over the greedy algorithm. The ε-greedy
in (14) renders a balance between exploration and

exploitation by randomly choosing the exploration/
exploitation actions. Exploitation (greedy algorithm)
chooses the best action to get the most reward by ex-
ploiting the current knowledge of the sensor/actuator
placement. However, being greedy may not actually get
the most reward; thus, it may lead to sub-optimal be-
haviors. Exploration allows an agent to improve its
current knowledge about the relationship between
sensor/actuator placement and closed-loop control per-
formance, which leads to long-term benefits. The balance
between exploration and exploitation can be tuned by the
probability variable ε.

The different solution rendered from the RL and greedy
algorithm also indicates that the submodular property
doesn’t hold for the co-design of OSAP and controllers for
the flexible wing. Hence, the greedy algorithm is not
recommended if very few sensors and actuators are se-
lected for a nonlinear or parameter-varying system. Be-
sides, the result indicates that installing all sensors and
actuators at a few dominant positions is not the best
placement policy.

In addition, the GA is used to solve the MISDP and
compared with the RL algorithm. The selections of GA
parameters are summarized as follows: The probability
of cross-over is 0.5; the probability of mutation is 0.1;
the population size of each generation is 30; and the
elite ratio is 0.1. There are 22 binary variables (13 for
sensor placement and 9 for actuator placement). To
make a fair comparison, the objective function and
evaluation of the co-design are the same as the RL. The
results of the best achievable H∞ performance index γ
are shown in Figures 8 and 9. The black curve is the
optima in each generation, and the blue curve is the
mean value of all populations. It is easy to observe that
the GA can obtain the convergent solution in around 30
generations, which needs around 900 evaluations of the
co-design variables. The convergent solution of co-
design is summarized in Table 4. The convergent so-
lution is the same as that of RL, which can cross-
validate with each other.

Verification by high-fidelity simulation

To verify the solutions solved by RL for the co-design
problem, the sensor/actuator placement and gain-
scheduling control are applied to the high-fidelity simu-
lation of the flexible wing. The high-fidelity model is
derived as the full-order model from the finite-element
analysis.

Figure 4. The best/worst and mean reward �min γ versus
episode by RL selecting 9 sensors and 6 actuators.

Figure 5. The best/worst and mean reward �min γ versus
episode by RL selecting 6 sensors and 4 actuators.

Table 2. Summary of the optimal result by the reinforcement learning algorithm.

N1 = 9, N2 = 6 N1 = 6, N2 = 4

Sensor 5, 6, 7, 8, 9, 10, 11, 12, 13 8, 9, 10, 11, 12, 13
Actuator 4, 5, 6, 7, 8, 9 4, 5, 8, 9

γ 0.3214 0.3764
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The high-fidelity simulation scenario is considered as
the flexible wing cruising at 10,000 feet with varying flight
speeds. The flexible wing will go through a 1 � cos type
gust disturbance in Figure 10. The selected sensors and
actuators are placed on the full-order model and work
together with the gain-scheduling controller to suppress
the vibrations caused by gust disturbance. The flight speed
envelope is shown in Figure 10. Note that the mode M1
becomes unstable when flight speed is over 115m/s at time
instant t = 2.2 second.

Figure 11 plots the vertical displacement at four se-
lected positions on the flexible wing, using the results from
RL and the greedy algorithm. First of all, both algorithms
produce stabilizing LPV controllers, whereas the open-
loop system is unstable. Second, the OSAP and associate

Figure 6. min γ versus episode by the greedy algorithm to
select 9 sensors and 6 actuators.

Figure 7. min γ versus episode by the greedy algorithm to
select 6 sensors and 4 actuators.

Table 3. Summary of the optimal result by the greedy
algorithm.

N1 = 9, N2 = 6 N1 = 6, N2 = 4

Sensor 5, 6, 7, 8, 9, 10, 11, 12, 13 8, 9, 10, 11, 12, 13

Actuator 4, 5, 6, 7, 8, 9 4, 5, 6, 9

γ 0.3214 0.3865

Figure 8. �min γ versus episode by the GA to select 9
sensors and 6 actuators. The blue curve is the mean rewards of
all populations in each generation.

Figure 9. min γ versus episode by the GA to select 6 sensors
and 4 actuators. The blue curve is the mean rewards of all
populations in each generation.

Table 4. Summary of the optimal result by the genetic
algorithm.

N1 = 9, N2 = 6 N1 = 6, N2 = 4

Sensor 5, 6, 7, 8, 9, 10, 11, 12, 13 8, 9, 10, 11, 12, 13

Actuator 4, 5, 6, 7, 8, 9 4,5,8,9

γ 0.3214 0.3764

Figure 10. 1-cos type disturbance (top) and flight speed
profile (bottom) in simulation scenario.
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LPV controller from the RL algorithm produces smaller
magnitudes at points z5, z9, and z13 (wing tip) than that of
the greedy algorithm.

Discussions and conclusion

This paper presents amethod using RL to co-design optimal
sensor/actuator placement (OSAP) together with H∞ con-
trol for a flexible wing. With a given set of available sensor
and actuator locations, the OSAP is formulated to a CO of
MISDP, which optimizes the H∞ performances of the
closed-loop system. Reinforcement learning (TD learning)
treats sensor/actuator placement as states and solves the CO
without relaxing the discrete variables. The effectiveness of
RL is demonstrated by the simulation results and closed-
loop responses in high-fidelity simulations. The compar-
isons between the RL, the greedy algorithm, and the GA
indicate that the adaptive heuristic RL can lead to better
results than the static heuristic greedy method and reduced
computations than the GA. The results demonstrate the
excellent capability of RL in solving the co-design problem
of structure control systems by finding optimal states in
high-dimensional search space.

The results also imply the possibility of solving other
co-design problems using RL. Future work includes the
investigation of computational complexity and the pos-
sibility that RL can be implemented safely and in real time.
The parameter-varying system, such as morphing wings,
provides an application scenario to properly adapt the
structure parameters together with an active controller in
real time to achieve optimized system performance.
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Appendix

The LPV matrices of the flexible wing as a polynomial
parameter-dependent matrix are shown in (15). The matrix
A(θ) shows the polynomial parameter dependency, which
is plotted in Figure 2. The matrices B(θ) and C(θ) are hard
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to display here due to high dimension. They can be ex-
tracted from the download link. The flight speed is
scheduling parameter θ, and it ranges from 80 to 130 m/s

AðθÞ ¼ diagðM1,M2,M3,M4,M5,M6Þ,

Mi ¼
"
αiðθÞ �βiðθÞ
βiðθÞ αiðθÞ

#
, for i ¼ 1; 2,…, 6:

(15)

α1(θ) = 9.47–0.24θ+0.0014θ2,
β1(θ) = 0.93+0.09θ+5.6×10�4θ2;

α2(θ) = �7.91+0.15θ�0.0012θ2;
β2(θ) = 27.47�0.08θ+0.0012θ2;
α3(θ) = 6.65�0.24θ+0.0014θ2;
β3(θ) = 29.54+0.04θ+0.0015θ2;
α4(θ) = �5.93�8×10�4θ+0.07×10�4θ2;
β4(θ) = 48.52�0.0059θ+0.53×10�4θ2;
α5(θ) = 0.69�0.23θ+0.75×10�4θ2;
β5(θ) = 0.17�0.0047θ+0.47×10�4θ2;
α6(θ) = �18.04�0.007θ+0.22×10�4θ2;
β6(θ) = 82.68 + 0.017θ�0.50×10�4θ2.
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