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Updating multi-fidelity structural dynamic
models for flexible wings with feed-forward
neural network
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Abstract
In multidisciplinary design optimization of aerospace structures (e.g., a flexible wing), it may be convenient and practical to
break such a complex problem into multi-fidelity, multi-stage design problems. Structural model updating is needed in
multi-fidelity, multi-stage optimizations to ensure the consistency of models with different fidelity. However, due to the
inequality in structural parameters, there exists a fundamental difficulty in the model updating from a lower fidelity model to
a higher fidelity model. In this paper, a feed-forward neural network is applied to determine the structural dynamic
characteristics of a higher fidelity model based upon a lower fidelity model. The feasibility of this approach is demonstrated
by updating beam-like wings to a thin shell-based model and a one-cell wing box model, respectively. The quality and
accuracy of model updating using the proposed method are also discussed regarding the neural network structure and
sample size.
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Introduction

In recent years, multi-fidelity, multi-stage approaches have
been proposed for the multidisciplinary design of aero-
space structures. These approaches leverage structure
models of multiple fidelity. For example, beammodels can
be used in low fidelity analysis providing a fast aeroelastic
and performance design. In contrast, shell and wing box
models are used in the high-fidelity analysis for detailed
structural stress distribution. As the design optimization
may be conducted parallelly with the models at different
levels of fidelity, an exchange of model properties is
needed for the lower-to-higher and higher-to-lower up-
dating. These updating processes ensure that the parallel
optimizations are pertinent to the same wing configura-
tion. Therefore, the structure designed in one fidelity
satisfying its constraints can provide a reference to the
other fidelity for another design process and problem. The
design cycle is sped up as long as the designed structure on
one fidelity level and the reference on the other fidelity
level represent the same wing configuration.

There have been previous attempts for structural model
updating from higher fidelity models to lower fidelity
models, such as the variational asymptotic method (VAM)
1,2 and the variational asymptotic beam section analysis
(VABS).3–6 Based on these ideas, a three-dimensional
elasticity problem for a slender structure can be split

into a two-dimensional cross-sectional analysis and a one-
dimensional beam analysis. Thus, the updating or di-
mensional reduction from higher-fidelity to lower-fidelity
structures can be conducted with fewer restrictions. Note
that the term “fidelity” is used synonymously with “di-
mension” for structural models in this paper.

However, it is still a novel field for structural model
updating from lower fidelity models to higher fidelity
models, which is essentially a dimensional expansion
problem. The artificial neural network (ANN) provides an
alternative to traditional direct and iterative methods due
to its powerful training process. One of the appealing
features of ANN is that it can approximate the nonlinear
mapping of input and output data without knowing the
relationship between them. All input and output data of
ANN are physically meaningful. Furthermore, ANN does
not require any derivative, making the application more
convenient. The quality of ANN depends on discrete
training samples. Although the requirement of generating

Department of Aerospace Engineering and Mechanics, The University of
Alabama, Tuscaloosa, AL, USA

Corresponding author:
Weihua Su, Department of Aerospace Engineering and Mechanics, The
University of Alabama, Tuscaloosa, AL 35487-0280, USA.
Email: suw@eng.ua.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/09544100221128998
https://journals.sagepub.com/home/pig
https://orcid.org/0000-0002-4458-0524
mailto:suw@eng.ua.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F09544100221128998&domain=pdf&date_stamp=2022-09-27


the samples may offset the convenience of ANN, the
approaches with ANN are still efficient if the samples
already exist in the database.

Artificial neural networks have been applied for
structural monitoring and damage detection in a vari-
ety of engineering fields, including beams,7 bridges,8

building frames,9 pipelines,10 and helicopter air-
frames.11 Deep learning neural networks,12 elaborated
neural networks with the Bayesian statistical frame-
work,13 and the Kriging interpolation14 have also been
studied. In this paper, a multi-layer feed-forward
neural network is applied since its generality for
nonlinear mappings with two hidden layers has been
confirmed.15 The capability of pattern matching makes
the multi-layer feed-forward neural network a prom-
ising tool for updating or dimensional expansion
problems. In addition, the number of hidden neurons
and sample size have been recognized to significantly
impact the performance of neural networks. An in-
sufficient number of hidden neurons or sample size
may result in a poor neural network, whereas too many
hidden neurons or sample size may cause overfitting.
Recently, the Local Linear Model Tree has been de-
veloped to determine the number of neurons for neural-
fuzzy networks.16 However, the model tree optimi-
zation may make the feed-forward neural network far
more complex and offset its convenience. Hence, there
is no strict rule to determine these numbers for feed-
forward neural networks by far.

This paper focuses on studies of updating cantilever
beams to higher-fidelity shell and wing box config-
urations. The feed-forward ANNwith two hidden layers is
implemented to transfer modal characteristics and total
mass to higher fidelity models for pattern matching. Thus,
linear static and modal analyses in the multi-fidelity, multi-
stage approach are guaranteed to be consistent. The
proposed neural network is intended to simultaneously
determine the higher-fidelity model’s geometric parame-
ters and material properties. Section 2 is devoted to the
fundamentals of neural networks and error comparisons
between the predicted and measured models. Section 3
deals with two updating cases. One is the updating from
a beam-like wing to a thin shell-like wing, and the other is
the updating from a beam-like wing to a one-cell wing
box. Trial studies are also carried out for the proper sample
size and the number of hidden neurons in each case.
Section 4 concludes the implementation of neural net-
works for model updating and discusses future research
directions.

Fundamentals of model updating using
neural networks

The flowchart of the proposed model updating is
shown in Figure 1. The original beam properties are
fed into the modal analysis to obtain the natural fre-
quencies and mode shape vectors of the desired modes.
All these modal characteristics and the total mass of the
original beam are stored in the column vector Xlow. The

design center of the higher-fidelity model can impact
the quality and computational cost of the neural net-
work. It can be approximately determined via the
moment of inertia of a specific cross-section. A well-
selected center can lead to an updating process with
a smaller training space. On the contrary, an arbitrarily
picked center requires a larger training space, a larger
training population, and much more computational
effort. In this study, the inverse process of the VABS
approach17 is used for this approximation.

Higher-fidelity samples around the design center within
a design space are fed into the MSC.Nastran for the modal
analysis. Modal characteristics of each sample are ob-
tained and stored in vector Xhigh. All sampled vectors and
Xlow are fed into the feed-forward neural network. The
neural network compares Xhigh and Xlow for an error
vector. Thus, the paired input-output of the neural network
is the higher-fidelity design and the corresponding error
vector. The neural network aims to figure out the higher-
fidelity design with the minimum error vector via the
training, cross-validation, refinement, and inverse design
process.

In a multi-fidelity, multi-stage aeroelastic design, the
original beam properties for updating represent the beam-
like wing with optimal overall performance and aero-
dynamic shape. They are usually obtained via a lower-
fidelity aeroelastic optimization. However, this study fo-
cuses on demonstrating the feasibility of this updating
approach. Therefore, the beam properties are given
without the aeroelastic optimization process.

Comparison of modal characteristics

The modal characteristics, including natural frequencies
and mode shape vectors, are adopted since they can
reflect the inherent structural dynamic properties irre-
spective of excitations.7,9 Thus, Xlow and Xhigh are ex-
pressed as

X low ¼
n
flow1,…, flowNm

,φlow1,…,φlowNm
,…,mlow

o

X high ¼
n
fhigh1,…, fhighNm

,φhigh1
,…,φhighNm

,…,mhigh

o

(1)

where the superscripts “low” and “high” represent the
fidelity of each model. f represents the natural frequency. φ
represents the mode shape vector. The subscript “Nm”

represents the number of selected modes in the compar-
ison. As previously discussed, an error vector ε between
Xlow and Xhigh is required for the comparison. ε is con-
structed as

ε ¼
n
εf 1,…, εf Nm

, εφ1,…, εφNm
,…, εm

o
(2)

where the components εf and εm represent the relative error
of the natural frequency and mass, respectively. εφ rep-
resents the root mean square error (RMSE) of the mode
shape vector. With the error vector, the model updating is
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achieved by minimizing the sum of all individual error
components while satisfying all individual constraints,
given as

min
Xhigh

X
ε

s:t:

8><
>:

εf ≤εf , lim
εφ≤εφ, lim
εm≤εm, lim

(3)

Feed-forward neural network

The feed-forward neural network possesses a layered
structure and allows connections from neurons in one
layer to those in the forward direction. Various inter-
connected artificial neurons are involved in such neural
networks, which can model biological neurons in the
simplest form while performing complex tasks. The
process of transferring an NI-dimensional input vector to
an NO-dimensional output vector within two hidden
layers is illustrated in Figure 2. This special architecture
is mainly designed for approximating an unknown
nonlinear mapping.

In the hidden layer, each neuron receives multiple
inputs. Through activation functions, weight matrices w,
and bias vectors b, one output a is produced and trans-
ferred to the next layer in each neuron. Thus, output
vectors a1 and a2 are expressed as

a1 ¼ f 1
�
w1Iþ b1

�

a2 ¼ f 2
�
w2a1 þ b2

�

¼ f 2
�
w2f 1

�
w1Iþ b1

�þ b2
� (4)

where f1 and f2 usually represent the hyperbolic tangent
function and linear function, respectively.18 I represents
the input vector. Equation (4) can be expanded as

a11 ¼ f 1
�
w1

1;1I1 þ w1
1;2I2 þ/þ w1

1,NI
INI þ b11

�

a12 ¼ f 1
�
w1

2;1I1 þ w1
2;2I2 þ/þ w1

2,NI
INI þ b12

�

«

a1Nh
¼ f 1

�
w1

Nh , 1
I1 þ w1

Nh, 2
I2 þ/þ w1

Nh ,NI
INI þ b1Nh

�

(5)

and

a21 ¼ w2
1;1a

1
1 þ w2

1;2a
1
2 þ/þ w2

1,Nh
a1Nh

þ b21

a22 ¼ w2
2;1a

1
1 þ w2

2;2a
1
2 þ/þ w2

2,Nh
a1Nh

þ b22

«

a2NO
¼ w2

NO , 1
a11 þ w2

NO , 2
a12 þ/þ w2

NO ,Nh
a1Nh

þ b2NO

(6)

where Nh represents the number of neurons in the first
hidden layer. a2 represents one predicted error vector
between the generated higher-fidelity model and the
original lower-fidelity model. It is the final output of the
neural network. In addition to the predicted error vector,
each sampled higher-fidelity model is compared with the

Figure 1. Flowchart of model updating.
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original lower-fidelity model, providing a measured error
vector between Xlow and Xhigh. Depending on the
complexity of the feed-forward neural network, all
predicted error vectors obtained by neural networks
should accurately match their corresponding measured
error vectors.

Design of ANN

The design of an ANN generally consists of the nor-
malization of input, the training process, the determination
of neural network structure and sample size, and the re-
finement, if necessary.

Normalization. For the accuracy of the neural network,
a normalization of input data is required since the raw
training data can vary significantly in their orders (e.g.,
geometrical parameters vs material properties in this
study). A significant difference in magnitude orders of
these data may lead to an ill-conditioned neural net-
work, making the learning process biased or in-
accurate. Previous discussions19 indicate that properly
scaling the raw input and output data can avoid this
problem. This is also why the error vectors are used in
the comparison.

In this study, a Latin Hypercube Sampling (LHS)
strategy is used to normalize all input components within
a prescribed range [0,1] around the design center. The
LHS divides each dimension of the input vector into
equally probable intervals and allows only one point
within each interval. It then randomly selects points and
combines them for a normalized vector. The main ad-
vantage of LHS is its capability to cover both small and
large design space problems of clustering. In addition, if
some dimensions have to be dropped, the existing data are
still LHS data and can be reused without reducing the
number of sampling data. Thus, all training, testing, and
validation data used in the following sections comprise
normalized input and output error vectors.

Cross-validation and training. Once the two-layer neural
network is selected, and the samples are generated, the
next decision is on the neural network’s structure, that is,
the number of hidden neurons in each layer. As the number
of hidden neurons in the second layer is determined by the
output vector, only a desired number in the first hidden
layer needs to be decided.

In addition, the sample size should be determined. It
has been discussed as “the curse of dimensionality” by
Bishop.20 As the dimension of the input vector increases,
the number of sampled vectors required for a good neural
network also increases, often exponentially. However,
there is no clearly defined boundary at which the sample
size is manageable.

In this work, trial studies based on the k-fold cross-
validation are required. As illustrated in Figure 3, the
whole data set is first split into training and testing groups,
respectively. Trial studies with a specific number of hidden
neurons and sample size are carried out in the training
group. Given the trial of a specific design, the training
group is shuffled to maintain randomness and partitioned
into k equal-sized subsets. Each subset serves as a vali-
dation subset only once, with all the other subsets par-
ticipating in the training process. Repeating this process
yields k trained neural networks and k sets of predicted
outputs. The average of errors over all the validation data
sets εcv approximates the prediction capability of this
specific neural network, given by

εðlÞcv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ncv

XNcv

i¼1

XNO

j¼1

�
a2i, j � ti, j

�2
vuut

εcv ¼ 1

k

Xk

i¼1

εðlÞcv

(7)

where Ncv is the dimension of validation subsets, and t is
the measured error between Xlow and Xhigh. Among the
trial studies, the number of hidden neurons in the second
layer and the sample size are usually determined with

Figure 2. A typical feed-forward ANN with two hidden layers.
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a minimum εcv. Multiple times of random initialization can
be conducted to determine variables without being trapped
within a local minimum.

After the sample size and the structure are determined,
all subsets in the training group (both training and vali-
dation) are used to explore the desired values of weights
and biases. The neural network is well trained when all
predicted outputs a2 match the measured errors t in the
training group. The sum of the squared error for all pairs in
the training group is obtained as the training error εtr

εtr ¼
XNtr

i¼1

�
t i � a2i

�T�
t i � a2i

�
(8)

where Ntr is the dimension of the training group.
The Levenberg–Marquardt back-propagation (LMBP)

algorithm, a variation of the Steepest Descent back-
propagation (SDBP), is used to train the feed-forward
neural network. The weights and biases are initialized
randomly and updated based on the Jacobian and Hessian
matrices. The LMBP algorithm provides an efficient
convergence rate. Further information about this algo-
rithm can be found in Magar et al.21 εtr determines the
termination of the training, while the RMSE of the testing
group εts is used to assess the performance of the trained
neural network.

Refinement of neural network. When the feed-forward
neural network is established with small εts, it should
be able to approximate the error vector out of sampled
models in the design space. The optimal higher-fidelity
structural model is then obtained via the inverse design by
minimizing the sum of error components in the error
vector. The fmincon optimizer is used for this inverse
design, treating the normalized design center as the initial
condition of the fmincon optimizer.

This optimal higher-fidelity model is found based
upon the neural network model. If one uses the op-
timum properties to create the FE model, it may not be

the exact optimum solution. In this case, the neural
network must be refined around the first optimal
design.

The refinement procedure is shown in Figure 4. The
initial optimal design is treated as the new design center.
Compared to the initial design space, the refined neural
network may require fewer but more clustered samples
(see the green box in Figure 4). Modal analysis results of
all these new samples are obtained and compared to Xlow

for error vectors. The architecture of the initial neural
network and the refined neural network are the same.
Therefore, the neural network for the refinement keeps the
same number of hidden-layer neurons. The refinement
also requires the training process and the inverse design.
The refinement is terminated when the discrepancy is
smaller than the tolerance.

Numerical studies

Two model updating cases are demonstrated in this sec-
tion. In the first case, a beam-like wing is updated to a two-
dimensional thin shell-based model. In the second one,
a beam-like wing is updated to a three-dimensional one-
cell wing box model. In both cases, the 10-fold cross-
validation is performed to determine the number of hidden
neurons and the sample size.

Model updating from beam to shell model

Objective function for shell updating. A uniform, straight
beam-like wing with a large bending stiffness ratio (EIin/
EIout) of 1000 is used to generate a thin shell wing model
made up of isotropic material. The wing semi-span is
a fixed constant of 13.2 m. Hence, the design parameters
of the thin shell model are a combination of geometric
parameters and material properties, including the width
wshell, thickness tshell, Young’s modulus Eshell, Poisson’s
ratio μshell, and density ρshell of the shell model, as shown
in Figure 5.

Figure 3. k-fold cross-validation.
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By setting the tolerance of individual error as 0.05,
equation (3) is formulated as

min
xshell

X
εðxshellÞ

xshell ¼ fwshell , tshell,Eshell , μshell , ρshellg8>>><
>>>:

εf i ≤ 0:05

εφi ≤ 0:05 i ¼ 1; 2; 3; 4

εm ≤ 0:05

xlbshell ≤ xshell ≤ x
ub
shell

(9)

where i stands for the fundamental modes for compar-
isons. The first and second out-of-plane bending, the first
torsion, and the first in-plane bending modes are compared
for practicality concerns. The original beam properties and
natural frequencies are given in Tables 1 and 2,
respectively.

Generated thin shell model. As previously discussed,
a model input file of shell structures in MSC.Nastran may
consist of hundreds of CQUAD4 elements. The file is fed
into the MSC.Nastran’s SOL 103 for the modal analysis.
The measured properties are then used to train the neural
network.

Ten-fold cross-validation is used to evaluate the
general prediction capability of different neural net-
works based on their complexity. The 10-fold cross-
validation is performed since it is a good compromise
between cost and accuracy.22 Assume that twenty
hidden neurons are involved in the first hidden layer.
Eight neural networks with sample sizes varying from
100 to 450 are compared for the trial study. Similarly,
six other neural networks are compared to determine
the number of hidden neurons. The sample sizes of
these six neural networks are 350, while the number of
hidden neurons varies from 5 to 30. The number of
testing and training groups are selected to be 20% and
80% of the data set, respectively. Variations of all the
cross-validation, training, and testing errors are shown
in Figure 6. It can be seen that εcv, εts, and εtr decrease
by increasing the sample size and the number of hidden
neurons. As expected, all neural networks perform
better on the training subsets than on the testing group
and validation subsets. However, the training error is
not used to estimate the neural network. The training
error could drop to 0 as the overfitting occurs, while the
testing error increases significantly. By observing the

Figure 4. Refinement of ANN.

Figure 5. Design variables of the thin shell.

Table 1. Original beam properties to generate the shell model.

Beam properties Value

Semi-span, m 13.2
Out-of-plane bending rigidity, N�m2 5.63 × 105

In-plane bending rigidity, N�m2 6.25 × 108

Torsional rigidity, N�m2 9.00 × 105

Mass per span, kg/m 70
Rotational moment of inertia, kg�m2 8
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Table 2. Original beam frequencies to generate the shell
model.

Natural frequency Value

1st out-of-plane bending, Hz 0.29
2nd out-of-plane bending, Hz 1.82

1st torsion, Hz 9.61
1st in-plane bending, Hz 6.36

Figure 6. Performance of shell’s ANN with different settings.

Figure 7. Comparison of shell’s neural networks.

Table 3. Design space of shell model’s neural networks.

Variable
Initial shell’s neural
network

Refined shell’s neural
network

wshell, m 0.5–1.5 0.8–1.2
tshell, m 0.01–0.05 0.02–0.04

Eshell, GPa 100–350 200–300
μshell 0.25–0.35 0.28–0.32
ρshell, kg/
m3

2000–4000 2000–2800

Huang and Su 1505



validation and testing errors, it is found that the sample
size of 350 with 20 hidden neurons can achieve ex-
cellent nonlinear mapping.

The thin shell model that matches the original beam
model is generated using an initial neural network and one
refined neural network. The initial neural network is de-
signed with 350 samples (280 for training and 70 for
testing) and 20 hidden neurons in the first hidden layer.
The refined neural network is designed with 200 (160 for
training and 40 for testing) samples and 20 hidden neu-
rons. The training and testing results of these two neural
networks are plotted in Figure 7. The design spaces of
these two neural networks are shown in Table 3. It can be
seen that with fewer but more clustered samples, the re-
fined neural network provides smaller errors in both
training and testing.

These trained and refined neural networks are used to
determine the optimal thin shell model. The resulting
frequencies, masses, and mode shape errors are shown in
Tables 4–6. The thin shell model generated by the initial
neural network shows minor errors except for the first
out-of-plane bending mode’s frequency. The error of
5.05 × 10�2 is slightly larger than the desired tolerance.
The refined thin shell model mainly reduces this error to
2.70 × 10�2 while keeping all other individual errors

remarkably good. Therefore, the thin shell model that
matches the original beam is constructed with the ge-
ometry of wshell = 0.99 m, tshell = 0.032 m, and the
material properties are Eshell = 228 GPa, μshell = 0.3, and
ρshell =2237 kg/m3.

Model updating from beam to wing box model

Objective function for wing box updating. In this section,
a uniform, straight beam with a small bending stiffness
ratio of 5 is used to generate a one-cell wing box with
a rectangular cross-section. Tables 7 and 8 show the
properties and natural frequencies of the original beam.
For practicality concerns, this study does not consider the
layout of internal ribs and spars.

Some assumptions are made to simplify the updating
process. They are (1) the wing box is made of isotropic
shell elements, (2) the upper and lower skin are designed
with the same element, and (3) the leading-spar and the
trailing-edge spar are designed with the same element.
Thus, the updating is to figure out the optimal combi-
nation of width wbox, height hbox, skin thickness t1, spar
thickness t2, tip rib thickness t3, material properties Ebox,
μbox, and ρbox of the wing box, as shown in Figure 8.
Eight design variables are involved in this problem. By

Table 4. Frequencies and mass of initially generated thin shell model.

Value Relative error

1st out-of-plane bending, Hz 0.30 5.05 × 10�2

2nd out-of-plane bending, Hz 1.89 3.97 × 10�2

1st in-plane bending, Hz 9.83 2.32 × 10�2

1st torsion, Hz 6.27 1.42 × 10�2

Mass, kg 898.57 2.75 × 10�2

Table 5. Frequencies and mass of refined thin shell model.

Value Relative error

1st out-of-plane bending, Hz 0.29 2.70 × 10�2

2nd out-of-plane bending, Hz 1.85 1.65 × 10�2

1st in-plane bending, Hz 9.25 3.17 × 10�2

1st torsion, Hz 6.22 2.21 × 10�2

Mass, kg 921.66 2.53 × 10�3

Table 6. Mode shape errors of generated thin shell models.

Initial shell Refined shell

1st out-of-plane bending 2.76 × 10�3 2.72 × 10�3

2nd out-of-plane bending 6.55 × 10�3 6.54 × 10�3

1st in-plane bending 1.90 × 10�3 1.71 × 10�3

1st torsion 1.75 × 10�2 1.87 × 10�2

Table 7. Original beam properties to generate the wing box.

Beam properties Value

Semi-span, m 10
Out-of-plane bending rigidity, N�m2 4.60 × 107

In-plane bending rigidity, N�m2 2.40 × 108

Torsional rigidity, N�m2 2.00 × 105

Mass per span, kg/m 24
Rotational moment of inertia, kg�m2 2

Table 8. Original beam frequencies to generate the wing box.

Natural frequency Value

1st out-of-plane bending, Hz 7.76
2nd out-of-plane bending, Hz 49.35

1st torsion, Hz 79.14
1st in-plane bending, Hz 17.73

1506 Proc IMechE Part G: J Aerospace Engineering 237(7)



setting the tolerances as 0.1 and 0.05, equation (3) is
formulated as

min
xbox

X
εðxboxÞ

xbox ¼ fwbox, hbox, t1, t2, t3,Ebox, μbox, ρboxg8>>><
>>>:

εf i ≤ 0:1

εφi ≤ 0:1 i ¼ 1; 2; 3; 4

εm ≤ 0:05

xlbbox ≤ xbox ≤ x
ub
box

(10)

Generated wing box model. Depending on the discretization,
the wing box model consists of hundreds of CQUAD4 ele-
ments. Nine neural networks with varying sample sizes and
six other neural networks with different numbers of hidden
neurons are conducted for trial studies. Figure 9 illustrates the
neural network performance in terms of the training error and
RMSE of testing and 10-fold cross-validation. Compared to
the updating problem from beam to thin shell model, three
more input components are involved in this problem, making
the converged RMSE larger. Six hundred samples and 20
hidden neurons in the first hidden layer are then required to
achieve a good approximation.

Therefore, an initial neural network with 600 samples (480
for training and 120 for testing) and a refined neural network

with 300 samples (240 for training and 60 for testing) are
established to generate the wing box model. Both neural
networks are composed of 20 neurons in the first hidden layer.
Within the design spaces shown inTable 9, training and testing
results of these box’s neural networks are plotted in Figure 10.

By comparing the relevant wing boxes and the original
beam, individual errors in natural frequencies and masses
are shown in Tables 10 and 11. Model shape errors are
shown in Table 12. Mass and natural frequency errors of

Figure 8. Design variables of the wing box.

Figure 9. Performance of box’s neural networks with different settings.

Table 9. Design space of wing box’s neural networks.

Initial box’s neural
network

Refined box’s neural
network

wbox, m 0.6–1.2 0.75–0.85

hbox, m 0.15–0.3 0.2–0.3
t1,m 0.005–0.015 0.07–0.012

t2,m 0.003–0.01 0.003–0.008
t3,m 0.005–0.015 0.005–0.015

Eshell, GPa 150–400 150–400
μbox 0.25–0.45 0.25–0.45
ρbox,kg/m

3 1100–2700 1100–2700

Huang and Su 1507



the wing box related to the initial neural network satisfy
their inequality constraints. However, the resulting tor-
sional mode shape error exceeds its tolerance. In the re-
finement, the accuracy of the second out-of-plane bending
and first in-plane bending modes’ frequencies are sacri-
ficed for the accuracy of the torsional mode.

Modifications of mode shape errors can also be seen
from eigenvectors, shown in Figures 11–14. For the
bending modes, both the translational and rotational
components are compared. For the torsional mode, only
the rotational component is compared since the trans-
lational eigenvectors are negligible. Discrepancies can be
observed in the second out-of-plane bending mode and the
first torsion mode, in which the mode shape errors are in
the magnitude of 10�2. In this problem, such discrepancies
can be obtained by the RMSE but not the modal assurance
criteria (MAC). The MACmay provide a value of 0.99 for
the comparison between the original beam and the initial
wing box model. The 0.99 indicates a good match which is
not the case. Note that the tip rib may change the boundary
constraint of the wing box such that the maximum rota-
tions do not occur exactly at the tip. The one-cell wing box
model that matches the original beam is constructed with
the geometry of wbox = 0.75 m, tbox = 0.24 m, t1 =
0.0085 m, t2 = 0.0045 m, t3 = 0.0086 m, and the material

Figure 10. Comparison of box’s neural networks.

Table 10. Frequencies and masses of initially generated wing
box model.

Value Relative error

1st out-of-plane bending, Hz 8.27 6.62 × 10�2

2nd out-of-plane bending, Hz 47.83 3.08 × 10�2

1st in-plane bending, Hz 17.19 3.58 × 10�3

1st torsion, Hz 82.59 4.36 × 10�2

Mass, kg 230.30 4.04 × 10�2

Table 11. Frequencies and masses of refined wing box model.

Value Relative error

1st out-of-plane bending, Hz 8.02 3.30 × 10�2

2nd out-of-plane bending, Hz 46.56 5.65 × 10�2

1st in-plane bending, Hz 17.55 1.02 × 10�3

1st torsion, Hz 81.91 3.50 × 10�2

Mass, kg 232.69 3.33 × 10�2

Table 12. Mode shape errors of generated wing box models.

Initial box Refined box

1st out-of-plane bending 7.26 × 10�3 8.26 × 10�3

2nd out-of-plane bending 4.89 × 10�2 7.13 × 10�2

1st in-plane bending 1.52 × 10�3 1.56 × 10�3

1st torsion 1.10 × 10�1 7.11 × 10�2
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properties are Ebox = 270 GPa, μbox = 0.31, and ρbox
=1570 kg/m3.

Conclusions

A novel approach for model updating using neural networks
has been successfully demonstrated using simulated data. This
approach enables structural updating from the lower fidelity to
the higher fidelity. A substantial advantage of this technique is
its capability for dimensional expansion with no derivatives.
The main drawback is that the generality is restricted by the
architecture of the feed-forward neural network. However, it
can be seen that there is significant potential for this updating
approach with a more comprehensive database.

In this approach, the desired higher-fidelity design was
viewed as an unknown function of dynamic properties of the

Figure 11. Comparison of the first out-of-plane bending mode shape.

Figure 12. Comparison of the second out-of-plane bending mode shape.

Figure 13. Comparison of the first in-plane bending mode shape.

Figure 14. Comparison of the torsional mode shape.
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structure obtained by the finite element solver. In doing so,
a tool was developed to automate sampling processes, gen-
erating MSC.Nastran simulation bulk file, initiating the modal
solver, collecting data, and computing error vectors. The
feasibility of the feed-forward neural network was demon-
strated by expanding beam models to shell and wing box
models. The selection of neural network design is also covered
through the numerical cases.

The training process demanded computationally expensive
finite element solutions for building the database, especially
for collecting data between MATLAB and MSC.Nastran.
Efforts can be made to develop a parallel process enclosed in
MATLAB. With further improvement, the neural network
approach also shows significant potential to involve more
practical wing box models with internal configurations.

As only SOL 103 was performed with the MSC.Nastran
(high-fidelity) models, only the linear modal characteristics
were considered in the current study. Even though additional
nonlinear characteristics can be further considered, it is out of
the scope of this paper. It is also important to note that the
updating process from a low-fidelity model to a high-fidelity
model is a dimension expansion problem, whichmay result in
infinite solutions. In order to avoid such a problem, this study
applied topological information, for example, the high-fidelity
model is either plate-like or made of a box. As such topo-
logical information is usually available in practice, this
treatment is reasonable and feasible.
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