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Abstract
Enabled by multiple modalities of smart materials-based actuation and sensing, full waveform
inversion (FWI) nowadays is an advanced ultrasound computed tomography technique that
utilizes waveform data to generate high-resolution images of scanned regions. This technology
offers promise for defect/damage detection and disease diagnosis, showing potential in
nondestructive testing, structural health monitoring, and medical imaging. To reduce the lengthy
computational time caused by time-domain FWI, modern AI-driven and data-driven approaches
have been studied to accelerate the reconstruction process in recent years. However, most
existing research focused on tuning specific neural networks for fixed-domain applications,
leaving the relationship between model performance and characteristics of various training
datasets underexplored. This paper presents a comprehensive investigation into the
improvements achievable by integrating deep learning with the adjoint tomography theory,
addressing the scientific questions of how amounts/distributions of the training data,
augmentation, and loss functions influence the efficacy of this approach. The selected integration
strategy involves training a U-Net neural network model using pairs of low-resolution inverted
images and their corresponding high-resolution ground truth images. Once trained, the U-Net
model instantaneously converts low-resolution inference images to high-resolution
reconstructions. Generated using a proposed high-performance computing-based framework,
multiple datasets were designed to offer a general representation of various applications while
maintaining the shared characteristics across different use cases. The study also incorporates
augmentation strategies to expand the size and complexity of the training dataset without
significantly increasing the number of samples. Furthermore, a hyperparameter tuning
framework was introduced to investigate the impact of multiple loss functions on the model
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performance. An additional challenge in data-driven approaches is the generalizability of the
neural network model when exposed to out-of-distribution data. This study rigorously tests the
model’s generalizability against several out-of-distribution datasets and finds that the U-Net
model maintains a degree of generalizability when trained with unscaled datasets.

Keywords: ultrasound computed tomography, full waveform inversion, deep learning,
convolution neural network, reconstruction improvement

1. Introduction

Ultrasound waves exhibit high sensitivity to mechanical prop-
erty variations, including alterations in wave speed within a
given structure [1–3]. This inherent sensitivity has rendered
ultrasound an invaluable tool for detecting, characterizing, and
evaluating inhomogeneities, defects, and material properties
within diverse scanned regions [4–7]. Moreover, the advant-
ages of ultrasound testing extend beyond its effectiveness,
as it offers distinct benefits of reduced time and cost when
compared to experimental data acquisition [8]. Consequently,
ultrasound testing has gained significant traction in the fields
of structural health monitoring (SHM), nondestructive testing
(NDT), and medical imaging [9–12]. To convert ultrasound
signals into meaningful images various imaging techniques
are employed, e.g, reverse time migration (RTM) [13], full
waveform inversion (FWI) [14, 15], and total focusing method
[16]. This paper focuses on the FWI technique with a mod-
ern AI-based approach to improve the quality of imaging and
accelerate the process.

Conventional ultrasound imaging often lacks quantitative
representation of objects because wave equations were not
utilized in imaging. Unlike most other ultrasound imaging
techniques, FWI stands out for its ability to fully exploit
the waveform information contained within ultrasound signals
[17, 18]. FWI is an inverse process designed to quantitatively
determine the properties (model parameters) of a target spe-
cimen by minimizing the discrepancy (misfit) between the
acquired waveform signals and the synthetic waveform signals
[19]. The centerpiece of FWI is the adjoint method, which
enables the calculation of cross-correlations between forward
and back-propagated waveforms, facilitating the formulation
of an iterative optimization problem to determine the optimal
model parameters [20, 21]. As a result, FWI is capable of pro-
ducing high-resolution inverted images of the specimen. FWI-
based ultrasound computed tomography (USCT) has become
a promising technique for material characterization in indus-
tries related to SHM and NDT [22].

Currently, the majority of FWI applications are situated in
the time domain, in contrast to the frequency domain, largely
due to the computational challenges associated with frequency
domain FWI (FDFWI) involving large, sparse, indefinite lin-
ear systems per frequency [23]. Consequently, it can use
a few frequencies while the time domain FWI (TDFWI)
simultaneously simulates all relevant frequencies and hence

produces high-resolution images [24, 25]. Because of this
constraint, it is more challenging to implement FDFWI in
a very complex and large system, e.g. a 3D case. Hence,
this study focuses on TDFWI only. However, both domains
have multiparameter inversion ability [26, 27], which has
made FWI favorable for material characterization [28], recon-
structing structures with defects [15, 29], and polycrystalline
grain distribution [30]. Furthermore, FWI results with low-
frequency data can be exploited with other imaging modal-
ities e.g. high-frequency RTM for defect imaging in complex
heterogenous structures [31]. Beyond the SHM-NDT indus-
tries, FWI has been explored for more advanced applications
in medical imaging [32–34]. Some examples of this applica-
tion can be found in the imaging of breast [32, 35], bones [36,
37], and the human brain [22].

Although FWI offers advantages in model reconstruc-
tion, it also presents certain challenges that need to be
addressed. These challenges include extreme non-linearity,
ill-posed problems, and the requirement for a good starting
model [18, 38]. Furthermore, the mathematical complexity of
solving inverse problems also makes FWI an intensive task.
Consequently, FWI is computationally demanding, requiring
significant computational resources and time [18]. To mitig-
ate these challenges and enhance the efficiency of FWI, an
alternative approach using Artificial Intelligence (AI) can be
employed.

In parallel with the advancement of computational powers,
a data-driven AI-based approach has been investigated in
numerous image-based inverse problems in tomographic ima-
ging (e.g. selection of a good starting model, high computa-
tional cost, local minima, and cycle-skipping) [39, 40]. These
approaches can be broadly categorized into two groups: (1)
‘end-to-end’ such as convolution neural networks (CNN),
recurrent neural networks (RNN), generative adversarial net-
works (GAN), and (2) physics-informed neural networks
(PINN). A recent study on inversion with a supervised deep
learning technique combined CNN to provide a good initial
model and optimize the inversion results [41]. Robins et al [42]
used 2D CNN (U-Net model) to extrapolate band-limited sig-
nals to include additional lower-frequency content to allevi-
ate the cycle-skipping effects [42]. To mitigate the compu-
tational burden of FWI during inference, a DL model can
be trained with low-resolution inverted images at early iter-
ations to convert them into high-resolution images. Kleman
et al [43] applied a similar technique with single-iteration

2



Smart Mater. Struct. 34 (2025) 035059 S Anwar et al

inverted images to get high-resolution images, hence accel-
erating the TDFWI process. Recent studies have explored the
integration of GANs with seismic FWI [44] and similar data-
driven inversionmethods for problems like seismic impedance
inversion [45]. Zhang et al proposed a GAN-based model for
velocity estimation from raw seismic waveform data [46]. The
application of RNNs in FWI for elastic and transversely iso-
tropic media has also demonstrated significant potential [47,
48]. PINNs approximate the solution of a partial differential
equation (PDE) by training on control points and enforcing
constraints on the solution’s derivatives to satisfy the under-
lying PDE [49]. In contrast, RNN-based FWI involves com-
puting partial derivatives using finite differences and utilizing
automatic differentiation solely for model parameter updates.
However, the RNN method necessitates storage for the entire
multi-component wavefield [50].

However, a vast majority of current DL-related advance-
ments have not been explored for FWI-based USCT. Prior to
the application of this technique to real-world data, it is imper-
ative to establish a fundamental understanding of the concept
of combining DL methodology and FWI-USCT. This paper
focuses on the improvements achievable with the integration
of deep learning with the adjoint tomography theory, address-
ing the scientific questions of how amounts/distributions of the
training data, augmentation, and loss functions influence the
efficacy of this approach. Given the computationally intens-
ive nature of TDFWI, generating training datasets can be
highly time-consuming. To address this challenge, a novel
and efficient high-performance computing (HPC) framework
is proposed to accelerate dataset creation. Multiple datasets
of varying sizes (1k and 25k) were generated from different
TDFWI iterations (1–10) using this framework to systemat-
ically analyze the impact of dataset size and iteration count
on predictive accuracy. Additionally, various data augmenta-
tion strategies were employed to enhance material distribution
complexity, expand dataset size, and assess their influence on
DL-based FWI solutions. A multi-loss function strategy was
implemented to further enhance the model’s predictive capab-
ilities. Inspired by Liu et al [51], who improved DL-based x-
ray computed tomography using a combination of adversarial
loss, MSE-loss, perceptual loss, and gradient difference loss,
this study employed a similar approach in the U-Net model,
excluding the adversarial loss function, to evaluate its impact
on FWI-USCT. Furthermore, the model’s generalizability was
tested using ‘out-of-distribution’ (OOD) samples with mater-
ial properties outside the training dataset range.

The remainder of the paper is arranged as follows. First,
a brief theoretical background of TDFWI and the relation
between TDFWI and DL techniques are drawn out in the
methodology section. This is followed by the implementation,
data, and model section wherein the numerical samples, HPC-
enabled framework of data generation, data processing tech-
niques, augmentation strategies, and neural networks are intro-
duced. The results of different experiments are then detailed in
the results and discussion sections, which are followed by the
conclusion.

2. Methodology

FWI is a non-linear inversion method. Figure 1 illustrates the
process. TDFWI entails solving a forward problem of a time-
dependent wave equation to simulate wave propagation from
an ultrasound signal generator (source) to signal receivers,
followed by an inverse problem of solving a PDE constraint
optimization problem [20]. It aims to generate a model of
subsurface properties that minimize the gradient of the mis-
fit function between observed and modeled data [15]. The
first step is to create an initial model and sources. The wave
propagation in this initial model is solved by using a 2D
spectral element solver (i.e. SPECFEM2D) to create the syn-
thetic data. This process is called forward simulation [15]. In
numerical studies, forward simulation is also performed for
the ground truth model (GTM) to create the observed data.
Initially, the disparity or misfit between these two datasets is
expected to be significant. To update the synthetic model, an
adjoint simulation is performed. This procedure requires intro-
ducing adjoint sources as source time functions at the receiver
locations, back-projecting the measured data difference, and
optimizing the synthetic model. The interaction between for-
ward and adjoint wavefields determines the model paramet-
ers (e.g. wave speed). This process is repeated until the mis-
fit decreases below a specific value, where a high-resolution
model is reconstructed. In this study, a customized version
of SeisFlows (a Python-based framework) was used to imple-
ment TDFWI and the corresponding deep-learning data gener-
ation. The following subsections briefly discuss the underlying
mathematical background behind TDFWI.

2.1. Brief description of the mathematics behind TDFWI

For the acoustic case, the displacement wavefield s(x, t) can
be expressed as

ρ∂2
t s=−∇p+ f, (1)

where p denotes pressure, ρ is mass density, and f is the sources
as excitation forces. Luo [52] introduced a scalar potential ϕ
to define the displacement as s≡ 1

ρ∇ϕ and a scalar f such that
f=∇(κf), κ is bulk modulus. The relation between p and s
can be drawn through the continuity equation of acoustic wave
propagation as

p=−κ(∇· s) =−κ

(
∇·

(
1
ρ
∇ϕ

))
. (2)

Hence, equation (1) can be written in terms of ϕ, given by

1
κ
∂2
t ϕ =∇·

(
1
ρ
∇ϕ

)
+ f. (3)

For waveform tomography, Tarantola et al [17] introduced
the least-squares waveform misfit function, which can be
defined as
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Figure 1. A schematic flow-chart of TDFWI process [15].

χ(m) =
1
2

N∑
r=1

ˆ T

0
[psyn (xr, t,m)− pobs (xr, t)]

2 dt, (4)

where pobs and psyn are the pressure signals of the observed
and synthetic data at a particular receiver (r), and N is the
total number of receivers at an excitation event with a constant
source number. Time is defined by t and ranges between (0,T).
m is the model parameters (e.g. wave speed, attenuation, and
density) to be inverted. This study focused on a frequency
range where the attenuation is relatively low, so the attenu-
ation effects have been neglected. In addition, the density was
assumed to be constant throughout the process. Furthermore,
this study is based on acoustic wave propagation with no shear

contribution. Hence, only longitudinal wave speed (vp =
√

κ
ρ )

was considered as the key model parameter.
By introducing the Lagrange multiplier, λ(xr, t) to enforce

the PDE constraint in the TDFWI optimization, the misfit
function is reformulated as follows:

χ(m) =
1
2

N∑
r=1

ˆ T

0
[psyn (xr, t,m)− pobs (xr, t)]

2 dt

−
ˆ T

0

ˆ
Ω

λ

[
1
κ
∂2
t ϕ −∇ ·

(
1
ρ
∇ϕ

)
− f

]
dxdt, (5)

whereΩ is themodel space andN is the total number of receiv-
ers. To avoid cluttering, ∆pr(xr, t) is defined as

∆pr (xr, t) = psyn (xr, t,m)− pobs (xr, t) . (6)

The variation of equation (5) is

δχ(m) =

ˆ T

0

ˆ
Ω

[
N∑
r=1

∆pr (xr, t)δ (x− xr)

]
∆pr (xr, t)dxdt

−
ˆ T

0

ˆ
Ω

λ

[
δ

(
1
κ

)
∂2
t ϕ +

1
κ
δ
(
∂2
t ϕ

)
−∇ ·

(
δ
1
ρ
∇ϕ

)
−∇ ·

(
1
ρ
∇δϕ

)
− δf

]
dxdt, (7)

where ∆pr(xr, t) is the perturbation in pressure field psyn due
to to the model perturbation δm (e.g. δρ,δκ,δf) [20, 53]. Luo
[52] has shown that, when no model perturbations are present,
λ(xr, t) satisfies

1
κ
∂2
t λ=∇·

(
1
ρ
∇λ

)
−

N∑
r=1

[
∂2
t ∆pr (xr, t)

]
δ (x− xr) (8)

with the end conditions λ(x,T) = 0 and ∂tλ(x,T) = 0, and the
free-surface boundary condition λ= 0.

The adjoint potential wavefield can be defined using the
time-reverse Lagrange multiplier by ϕ †(x, t)≡ λ(x,T− t)s
which must satisfy the following adjoint wave equation,

1
κ
∂2
t ϕ

† −∇ ·
(
1
ρ
∇ϕ†

)
=

N∑
r=1

[
∂2
t ∆pr (xr,T− t)

]
× δ (x− xr) (9)

with initial conditions for adjoint potential ϕ(xr,T) = 0 and
∂ϕ(xr,T) = 0. The right-hand side of this equation can be
referred to as the adjoint source.
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By introducing adjoint wave equation, δχ can be expressed
in terms of the sensitivity kernels, Kρ and Kκ, given by

δχ(m) =

ˆ
Ω

[
δ

(
1
κ

)
Kκ + δ

(
1
ρ

)
Kρ

]
dx. (10)

Kρ and Kκ determine how the model parameters should be
updated [20]. These kernels represent the Fréchet derivatives
with respect to the model parameters and are defined as

Kκ (x) =−
ˆ T

0
ϕ† (x,T− t)∂2

t ϕ(x, t)dt, (11)

Kρ (x) =−
ˆ T

0
∇ϕ† (x,T− t) ·∇ϕ(x, t)dt, (12)

where the source variation perturbation is ignored, as ultra-
sound transducers are assumed to be well-defined inmodeling.
If the Fréchet derivatives can be calculated for individual mis-
fit functions, the new model can be defined from the previous
model by

mnew =mold +αH−1
old (−gold) , (13)

where α is the step length, g is the first-order derivatives
of χ(m) (i.e. gk = ∂χ/∂mk), and H is the Hessian mat-
rix of the second-order derivatives of χ(m) (i.e. Hkk′ =
∂2χ/(∂mk∂mk′), k and k′ are number of model parameters).
However, computing H−1 for every misfit function is compu-
tationally expensive and memory-intensive. Hence, different
optimization methods (e.g. L-BFGS) are used to approxim-
ate H−1 based on gradients from the previous iteration. The
subscripts ‘new’ and ‘old’ represent the current and previous
iterations.

2.2. Connection of TDFWI with deep learning

TDFWI can perform high-resolution damage imaging by iter-
atively solving the inverse problems of finding the best dam-
age model to minimize the non-linear error/objective func-
tion. However, this iterative optimization process of TDFWI
is time-consuming. Furthermore, approximation of H−1 can
still be challenging as the stability of these computations
highly depends on initial modeling. The neural network can
be employed as a surrogate for approximating αH−1

old (−gold)
in equation (13).

In the proposed data-driven approach, the neural network
is utilized as a post-processing approximation for TDFWI.
Instead of iterating to the optimal misfit reduction, the pro-
cess is halted early, yielding low-resolution inverted models
referred to as early-stopped FWI inverted images (EFIs). The
neural network is then trained using EFIs and their corres-
ponding GTMs. Once trained, it can generate high-resolution
reconstructions for new samples using only their EFIs.

3. Implementations, data, and model

3.1. Motive of the dataset building

As a pivotal preliminary step, this study concentrates on
a water-immersed scanning setup with embedded, unknown
material distributions with rectangular, possibly overlapped
shapes with irregular patterns at the boundary. The design of
the datasets aims to preserve the dominant challenges of non-
linear characteristics of the inverse problems that ultrasonic
FWI faces in material properties reconstruction to identify
different types of materials or foreign object debris. Because
this research focuses on building the relationship between the
aforementioned characteristic of data/model and the efficacy
of the AI-empowered approach, random material disturbance
from the background material (e.g. water) was selected to
enable the full control of the dataset distribution for probing
the inherent FWI-related physics.

3.2. Implementation of TDFWI in the model of interest

This study employs a simplified 2D acoustic model. The GTM
were constructed by introducing regions with varying mater-
ial properties in a water-immersed environment with a wave
speed of 1479 m s−1. They occupied a 12 mm× 12 mm space
and were discretized into 2500 spectral elements, with 50 ele-
ments along each axis and 25 nodes within each element.

To generate the ultrasonic signals, a linear array of 100
source points is situated on one side of the domain (e.g. posi-
tioned right below the upper boundary as depicted in figure 2).
These source points are excited simultaneously to produce a
planar wavefield with a center frequency of 1 MHz. In order
to capture this signal, an array of 400 receiver elements is
distributed across the domain boundaries. Figure 2 visually
represents the temporal evolution of the wave propagation at
different time intervals. The initial model was purposefully
constructed with different meshing configurations and back-
ground water wave speed compared to the GTMs to prevent
the occurrence of ‘inverse crime’ in FWI [54]. The initial
model was discretized into 900 spectral elements, featuring 30
elements along each axis, and assumed a homogeneous water-
immersed environment with a wave speed of 1500 m s−1.
Figure 3 illustrates the reconstruction of the longitudinal wave
speed mapping of an example model (figure 3(a)) with the
Initial Model (figure 3(b)) using classical TDFWI. At the first
iteration, it reconstructed a very blurry image (figure 3(c))
of the model, which gradually improved in further iterations
(see the 10th iteration reconstructed image in figure 3(d). The
TDFWI process was intentionally terminated before achiev-
ing optimal misfit reduction, thereby categorizing the resultant
inverted images as EFI.

A spectral finite element solver called SPECFEM2D [19]
was used to simulate forward and adjoint wave propagation.
A Python-based framework called SeisFlows for TDFWI [15,
55] is used. The output of both forward and inverse simulations
was the wave speed information of every node in the domain.
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Figure 2. Illustration of the wave propagation at various times in the domain of 12 mm × 12 mm with 100 transducers near the top wall and
400 sensors (green) surrounding the domain. There are three unknown materials inside this domain.

Figure 3. Longitudinal wave speed (Vp m/s) mapping of the (a) GTM, (b) initial model, and inverted images at (c) 3rd iteration and (d) 10th
iteration.

3.3. Data generation with high performance computing
(HPC)

Although SPECFEM2D and SeisFlows are well-developed
and effectively manage HPC resources in each TDFWI sim-
ulation, generating large datasets with these tools remains
highly time-consuming. For instance, a single TDFWI itera-
tion for a simple model takes about a minute, meaning that
sequentially simulating 1000 samples for 10 iterations would
require approximately seven days. To overcome this bottle-
neck, an HPC-based framework was developed to enable
rapid, parallel data generation. Figure 4 provides a schematic
representation of this parallelized process.

The data generation process in this numerical study begins
with developing the GTM and performing forward modeling
simulations using SPECFEM2D to generate corresponding
observed signals (referred to as real data in figure 1). A total of
25 000 GTMs were created by introducing randomly distrib-
uted unknown materials. To ensure dataset diversity, the num-
ber, dimensions, locations, and wave speeds of these unknown
materials were randomly selected. Forward modeling simu-
lations for all 25 000 GTMs were managed using the Simple
Linux Utility for Resource Management (SLURM), following
a similar approach as described for TDFWI simulations in the
subsequent paragraph. (To avoid redundancy, this step is not
shown in figure 4).

The next step involved performing iterative TDFWI with
the observed data. A single initial model was used for every
TDFWI simulation in this study, with parallelization managed
by SLURM. Each SLURM job processed a batch of 10 mod-
els simultaneously using all 40 CPU cores. For this study, only
10 FWI iterations were performed, and to minimize disk space

usage, only the updated models were stored after each iter-
ation. Each SLURM job completed 10 TDFWI iterations in
approximately 15min. To generate 1000models, 100 SLURM
jobs were required, allowing the framework to produce 1000
models every 15 min across 10 datasets (one for each
iteration).

SLURM was also used for post-processing, which is dis-
cussed in the following section. After processing, the data-
set was saved in an HDF5 file before being fed to the neural
network. The HDF5 file contained the EFI and corresponding
GTM image pairs.

3.4. Post-processing

The solver’s output yielded a one-dimensional wave speed
array, measuring 22 500 × 1, representing every node of
the spectral elements. This array inherently contained duplic-
ate points due to the overlap of nodes between adjacent
spectral elements. Furthermore, to mitigate artifacts, a mask
was applied to the domain’s periphery during simulation.
Consequently, the removal of these data points resulted in a
final one-dimensional array sized 9025 × 1. To facilitate the
transformation into 2D images, the 1D array was converted
into a 2D array measuring 95× 95 using the SciPy interpolate
library. Subsequently, all samples were aggregated into a uni-
fied three-dimensional NumPy array, sized 25 000× 95× 95,
corresponding to the 25 000 samples, with each sample com-
posed of pixel values spanning 95 × 95. To streamline max
pooling and upsampling machine learning processes, zero-
padding was applied to the samples along their bottom and
right sides, expanding the dimensions to 96 × 96. Within
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Figure 4. A schematic of HPC-based data generation technique using SLURM.

the context of the deep learning model, each sample was
treated as a grayscale image, hence featuring a single chan-
nel (as opposed to the three channels used for RGB images).
Consequently, the final configuration of the authors’ dataset
stood at 25 000 × 96 × 96 × 1.

In adherence to standard practice, the wave speeds under-
went normalization, employing a linear regression technique
that scaled them between 0 and 1. Consequently, this nor-
malization resulted in the lowest wave speed (1180 m s−1)
in the GTM dataset being set to 0, and the highest wave
speed (1730 m s−1) in the GTM dataset was rescaled to 1.
Similarly, each EFI dataset for different iterations was nor-
malized between 0 and 1 with respect to the individual min-
imum and maximum wave speed values. Throughout most of
the experiments in this study, this scaled dataset was utilized.
However, when assessing the neural network model’s gener-
alizability, as described in section 4.4, the performance was
suboptimal when using the scaled dataset. Therefore, for this
specific portion of the study, the data normalization process
was deliberately omitted during data processing.

The final step in the data preparation process is to ran-
domize and split the dataset into respective training, valid-
ation, and testing sets. The training and validation datasets
(of 20 000 and 3000 samples, respectively) are used to train
the neural network and the testing dataset (of 2000 samples)
is reserved to test the performance of the trained model. A

smaller dataset of 1000 samples (700 for training and 300
for validation) was subset from the original training dataset
(of 23 000 samples) to train the model with a smaller dataset.
In addition, to study the TDFWI iterations over DL-solution
in adjoint tomography, the model was separately trained on
3rd iteration EFI-GMT pair and 10th iteration EFI-GMT
pair datasets consisting of 1000 samples each. Two different
augmentation strategies were implemented for the smaller
datasets.

3.5. Augmentation strategies and datasets

This study employed two augmentation strategies to increase
the quantity and complexity of the training dataset without
generating samples. The first one was the classical augment-
ation strategy, where the sample was flipped along its axes.
This allowed us to increase the original dataset with three
times additional training samples. The second one was the
mixing augmentation strategy. Here, two samples were mul-
tiplied by coefficients α and (1−α), respectively, and then
added together to make a new sample. The value of α ran-
domly varied from 0 to 1.

The neural network was trained with multiple datasets. The
size of the datasets is described in table 1. Here, D3-1k denotes
the dataset with 3rd iteration EFI-GMT pairs of 1000 samples.
The augmentation strategies were only applied to the smaller
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Figure 5. The architecture of the U-Net model used in this study [43].

Table 1. Size of different datasets. Size of the each dataset would be ‘X’×96×96×1, where ‘X’ is the sample number in the datasets
described in the table. D3-1k denotes the dataset with 3rd iteration EFI-GMT pairs of 1000 samples.

Datasets

Training

Validation TestingNo Aug Flipping Aug Mixing Aug

D3-1k 700 2800 2800 300 2000
D10-1k
D3-23k 20 000 − − 3000

training datasets. No augmentation was applied to validation,
testing, and larger training datasets (of 20 000 samples).

3.6. Deep neural network architecture

The task of accelerating the TDFWI iteration process can be
posed as translating low-iteration TDFWI images into their
corresponding ground truth images. The U-Net architecture is
employed for this purpose, shown in figure 5. Initially intro-
duced for biomedical image segmentation by Shan et al [56],
U-Net, with its encoding-decoding architecture, has excep-
tional capabilities to capture local and global features, produ-
cing high-resolution images with limited data. The general U-
Net architecture is followed, composed of four down-sampling
layers (red arrows) and four up-sampling layers (dark green
arrows). In the down-sampling process, four sets of two con-
volutional kernels extract feature maps. Then, followed by a
pooling layer (light green arrows), the feature map projec-
tions are distilled to the most essential elements by using a
signal-maximizing process. By the end of the down-sampling
process, the feature maps are 1/16 of the original size: 6x6
in figure 5. Successful training should result in 6 channels in
this feature map retaining important features, which is veri-
fied by the model predictions in figure 7. Bi-linear interpola-
tion is used in the up-sampling process to expand the feature
maps. At each layer, high-resolution features from the down-
sampling path are concatenated to the up-sampled output from
the layer below to form a larger number of feature channels
(white arrows). This structure allows the network to propagate
context information to higher-resolution layers so that the fol-
lowing convolution layer can learn to assemble a more precise
output based on this information.

3.7. Combined loss functions

The current predominant approach involved deploying the
mean-square error (MSE) as the principal loss function, in con-
junction with the Adam optimizer, as expounded in the work

by Kleman et al [43]. Nonetheless, there are numerous loss
functions available, each adept at extracting distinct features
during the reconstruction process [57]. Consequently, com-
bining a variety of loss functions can significantly enhance
the fidelity of local structure reconstructions. For instance, Liu
et al [51] on the DL-based x-ray computed tomographymodel,
TomoGAN incorporated multiple loss functions, including
adversarial loss, MSE-loss, and perceptual loss, and demon-
strated improved prediction results. Based on the inspiration
from this research, this study also adopted a multi-loss func-
tions training approach.

In this study, the comprehensive loss function training com-
prises a weighted average loss that encompasses the following
components:

Pixel-wise MSE (mean square error): To quantify the pixel-
wise discrepancy between the EFI image (IC) and the GTM
image (IE), the MSE was computed as follows:

Lmse =
1
m

m∑
i=1

W∑
c=1

H∑
r=1

((
ICi
)
c,r

−
(
IEi
)
c,r

)2
, (14)

where W and H denote the width and height of the GTM or
EFI images, respectively, and m is the number of total training
mini-batches.

Gradient difference loss (GDL): GDL applied to a GTM/EFI
pair is employed to preserve edges and enhance the sharpness
of the reconstructed unknown materials. It calculates the sum
of the L2-norm differences between the gradients of an EFI
image and its corresponding GTM as follows [58, 59]:

Lgdl =
1
m

m∑
i=1

(
||∇xI

C
i −∇xI

E
i ||2 + ||∇yI

C
i −∇yI

E
i ||2

)
. (15)

Perceptual loss: A VGG (Visual Geometry Group) network,
pre-trained with ImageNet data, has proven to be an effective
high-level feature extractor for CT images. In this study, a 16-
layer pre-trained VGG network [51, 60] was utilized to com-
pute the perceptual loss as the Euclidean distance between the
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feature representations of an EFI and its corresponding GTM
image:

Lperc =
1
m

m∑
i=1

L∑
h=1

(
E
(
IC
)
i,h

−E
(
IE
)
i,h

)2
. (16)

In this equation, E(·) represents the pre-trained CNN encoder
responsible for embedding an image into an L-dimensional lat-
ent vector [51].

To create a comprehensive loss function for model training,
the individual loss functions with the corresponding hyper-
parameters (weights) were combined as follows:

L= λmseLmse +λgdlLgdl +λpercLperc, (17)

whereλmse,λgdl,λperc represent the hyperparameters (weights)
assigned to each loss function.

To determine the optimal weights for these distinct
loss functions, a hyperparameter tuning algorithm was
developed using Ray Tune. This algorithm utilized the
AsyncHyperBandScheduler in conjunction with the Optuna
search algorithm [61]. This particular search algorithm has
demonstrated superior performance and efficiency compared
to conventional methods such as grid search or random search
for this study. The maximum value for the validation struc-
tural similarity index measure (SSIM) was set as the evalu-
ation metric for the tuning. Such an approach enables effective
hyperparameter tuning. This optimization results in enhanced
accuracy and fidelity in the reconstructed output.

4. Results and discussion

For comparing two images (GTM and inverted/predicted
images), the SSIM index and pick-signal noise ratio (PSNR)
were used. In the simplified version of the SSIM index and
PSNR, two images (G and I) can be compared as

SSIM(G, I) =
(2µGµI+C1)(2σGσI+C2)(
µ2
G+µ2

I +C1
)(

σ2
G+σ2

I +C1
) , (18)

PSNR(G, I) = 10log10

(
MAX2

G

MSEG,I

)
, (19)

MSEG,I =

∑W
c=1,

∑H
r=1 [Gc,r− Ic,r]

2

W×H
, (20)

where µG and µI are the local means of luminance, σG, and
σI are the standard deviations of the contrast of the images,
and C1 and C2 are positive constants to avoid a null denomin-
ator. C1 and C2 are defined as (K1 ∗R)2 and (K2 ∗R)2, where
K1 and K2 are small constants with a value of 0.01 and 0.03,
respectively, and R is the dynamic range of the pixel value of
the images. MAXG denotes the maximum possible pixel value
of the image, W,H are width and height fo the images.

Before delving into the outcomes of the deep-learning
approach, a comparative analysis of the inverted images
obtained through classical FWI simulations at higher iterations
is conducted. A randomly selected sample from the test dataset

was used for this analysis, as shown in figure 6. For this spe-
cific sample, the classical FWI process could converge only
up to 36 iterations. The reconstructed images from the 1st and
36th iterations are displayed in figures 6(b) and (c), respect-
ively. The misfit reduction curve, illustrated in figure 6(d),
shows that the reduction rate plateaued after the 15th itera-
tion, with the process ultimately halting at the 36th iteration.
This early termination occurred due to discrepancies between
the initial model and the GTM, particularly in terms of mesh
configuration and backgroundwater wave speed. Additionally,
figure 6(e) illustrates the variations in the SSIM index across
different FWI iterations concerning the GTM image. Notably,
the SSIM index started at approximately 50% similarity with
the GTM in the 1st iteration and gradually increased to around
67% by the 15th iteration. Similarly, the PSNR value, which
began at 10 dB in the initial iteration, improved to 17.5 dB after
15 iterations. However, in line with the misfit reduction trend,
both the SSIM index and PSNR values stagnated beyond the
15th iteration, showing no further improvements. Although the
FWI reconstruction effectively identified the unknown materi-
als and their wave speeds, it struggled to accurately capture the
irregular boundary patterns of these materials at the selected
frequency. It is important to note that this particular sample
represents a simplified case, disregarding many uncertainties
that could arise in real-world scenarios. However, the focus of
this study is not to evaluate the efficacy of FWI reconstruc-
tion itself but rather to demonstrate how a U-Net model can
enhance FWI reconstructions using these suboptimally recon-
structed EFI images at low iterations.

In the following sections, the results of the DL-based FWI
solutions are presented. The U-Net model was trained with
several smaller datasets (D3-1k and D10-1k in table 1) with
three variants according to the augmentation strategy: no aug-
mentations, flipping augmentations, and mixing augmenta-
tions and a large dataset (D3-23k in table 1). The training time
for all smaller datasets was about 8–10 min and 2 h 45 min for
the larger dataset using a single GPU core.

4.1. Test prediction: small datasets - 3rd and 10th iteration
inverted samples

Predictions of all U-Net models trained with variants of D3-
1k datasets achieved SSIM values above 91%. Comparing the
different augmentation strategies, the performance of the U-
Net models was comparable in the mixing augmentations and
no-augmentations in most of the test samples. On the other
hand, the model trained with the flipping augmented data-
set of D3-1k performed slightly better than other strategies in
terms of average SSIM and PSNR values (table 2). The aver-
age SSIM and PSNR values of these test results were 90.95%
and 25.63 dB (no-augmentations), 93.15% and 26.94 dB
(flipping augmentation), and 92.87% and 26.51 dB (mixing
augmentation).

Figure 7 illustrates the model performance for two spe-
cific test samples: Sample-1, where the material distribution
was sparse with no overlapping regions, and Sample-2, where
the material distribution was more concentrated with overlap-
ping regions. Figures 7(a) and (f) represent the ground truth
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Figure 6. Comparison between inverted images at different iterations of the classical FWI with the corresponding GTM for an example
sample. (a) is the GTM, (b) inverted image at the 3rd iteration, (c) final inverted images at the 36th iteration, (d) Misfit reduction over
iterations, and (e) SSIM index and PSNR between GTM and inverted images at different iterations.

images of the samples, while (b) and (g) display the corres-
ponding EFIs at the first iteration, which served as inputs to
the neural network. Figures 7(c)–(e) are the predictions of
sample-1 when the model was trained with the D3-1k data-
sets with no augmentations, flipping augmentation and mixing
augmentation, respectively. Similarly, figures 7(h)–(j) are the
predictions of sample-2 that depict the predictions for sample
2 under the same training conditions. For both samples, aug-
mentations somewhat helped in the boundary definition of the
material over the no-augmentation case. Overall, while the
SSIM and PSNR values were comparable across all cases, the
flipping augmentation strategy yielded slightly better results.
However, some artifacts and anomalies persisted in the pre-
dicted wave speed reconstructions. Although the DL-based
FWI solution demonstrated quantitative improvements over
the classical FWI approach, the model still struggled to cap-
ture the irregular boundary patterns of the unknown materi-
als. This indicates that the quality and quantity of the training
dataset may not have been sufficient to achieve significantly
enhanced predictions.

By utilizing higher iteration EFIs from the 10th iteration
datasets (D10-1k), the model was able to achieve approxim-
ately 99% similarity to the GTM and 40 dB PSNR value across
all augmentation strategies, as detailed in table 2. The model’s
performance for the same specific test samples used in the pre-
vious case is depicted in figure 8. In this case, figures 8(b)
and (g) display the EFIs at the tenth iteration, which served
as inputs to the neural network. Figures 8(c)–(e) and (h)–(j)
present the predictions obtained using different augmentation

strategies. Unlike the classical FWI solution or DL-based FWI
solution shown in the previous case, this model could pre-
dict the irregular patterns of the unknown material boundar-
ies. Notably, the neural network exhibited similar performance
across all cases. The artifacts and anomalies in wave speed pre-
dictions were also reduced substantially. However, augment-
ations did not appear to provide additional benefits when the
model was trained with higher iteration EFIs.

These results reinforce the idea that higher iteration EFIs
already contained richer and cleaner features of wave speed
distribution for accurate predictions, making additional aug-
mentation redundant. Since the key significance of the aug-
mentation strategies is to make the training dataset diverse
and more generalizable, they benefit the model trained with
lower iteration EFIs. Additionally, augmentations, especially
mixing augmentation, may introduce certain spatial trans-
formations that may not align with the physical properties
of wave propagation, which lead to the inclusion of artifacts
(figure 7(e)). On the other hand, augmentations have some
benefits with the complex samples (similar to sample-2) with
complicated overlaps than the sample with sparse material dis-
tribution (figures 8(h)–(j)).

4.2. Test prediction: large dataset - 3rd iteration inverted
samples

Expanding the dataset size has been proven to be instrumental
in enhancing the model’s training. Consequently, the same U-
Net architecture was trained with a dataset comprising 20 000
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Figure 7. Prediction results of the U-Net model trained with D3-1k datasets. (a) and (f) are the GTMs and (b) and (g) are the respective EFI
at 3rd iteration. (c)–(e) are the predictions of sample-1 when the model was trained with the D3-1k datasets with no augmentations, flipping
augmentation, and mixing augmentation, respectively. (h)–(j) are the predictions of sample-2 when the model was trained with the D3-1k
datasets with no augmentations, flipping augmentation, and mixing augmentation, respectively.

Figure 8. Prediction results of the U-Net model trained with D10-1k datasets. (a) and (f) are the GTMs and (b) and (g) are the respective
EFI at the 10th iteration. (c)–(e) are the predictions of sample-1 when the model was trained with the D10-1k datasets with no
augmentations, flipping augmentation, and mixing augmentation, respectively. (h)–(j) are the predictions of sample-2 when the model was
trained with the D10-1k datasets with no augmentations, flipping augmentation, and mixing augmentation, respectively.

Table 2. Average SSIM (in %) and PSNR (in dB) values for testing the model trained different datasets.

Datasets No Augmentation Flipping Augmentations Mixing Augmentation

D3-1k 90.95%, 25.63 93.15%, 26.94 92.87%, 26.51
D10-1k 98.24%, 39.10 97.62%, 32.55 98.13%, 38.42
D3-23k 98.0%, 36.46 × ×

samples and validated with 3000 samples (referred to as D3-
23k in table 1). In this scenario, only the third iteration of
TDFWI images with no augmentation was utilized.

Figure 9 showcases the neural network’s performance for
the same test samples featured in previous cases. While the

neural network with D3-1k datasets failed to predict the irreg-
ularities boundary of the inside materials, this model was able
to identify them with SSIM and PSNR boost to 98.9% and
40.5 dB for sample-1 and 98.13% and 35.78 dB for sample-2,
respectively.
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Figure 9. Prediction results of the U-Net neural network trained with D3-23k datasets. (a)–(c) are the GTM, 3rd iteration EFI, and
predicted images for sample-1, and (d)–(f) are the GTM, 3rd iteration EFI, and predicted images for sample-2, respectively. No
augmentation strategy has been used in the training process.

The average SSIM and PSRN values increased from 92%
and 25.63 dB of D3-1k dataset with no augmentation to about
98% and 36.46 dB, as illustrated in table 2. The prediction
results exhibited similarities to those obtained with the D10-1k
dataset. This underscores that the current neural network can
produce nearly perfect high-resolution images when trained
with very low-resolution samples, provided it is trained with
sufficient data.

4.3. Results of using combined loss functions

Up to this point, discussion has been made regarding enhan-
cing prediction results through dataset quality improvements
and the augmentation of data samples. In this section, the
improvement of prediction results through the incorporation
of multiple loss functions during training is discussed.

Among the various scenarios examined previously, it was
observed that the model trained with the D3-1k dataset yiel-
ded suboptimal results. Thus, this dataset was selected for fur-
ther refinement through hyperparameter tuning to boost the
model’s testing performance. It is important to note that the
tuning process significantly relies on the initial values and the
range of hyperparameters.

At first, the tuning was initiated with values of 1 for λmse,
λgdl, and λperc, and explored a range of (1–10), (1–10), and (0–
2) for each, respectively. The weights were iteratively updated
using the best values obtained in each trial. After several iter-
ations, the initial values for the loss function weights were set

at λmse = 19.48, λgdl = 23.86, and λperc = 2.0, with an exten-
ded range of (1, 40), (1, 40), and (0, 2) for λmse, λgdl, and λperc,
respectively. With this setup, the optimal weights were found
as follows: λmse = 22.90, λgdl = 30.37, and λperc = 1.32. The
tuning process, comprising 40 trials on 4 GPUs, was com-
pleted in approximately 20 to 25 min.

In the next experiment, the perceptual loss was dropped,
and the model was tuned with only MSE and GDL with initial
values of λmse = 22.90 and λgdl = 30.37 and range of (1, 40)
for each. The optimal weights in this case were λmse = 21.002,
λgdl = 28.3987.

Figure 10 presents the prediction results for the same
samples discussed previously. Comparing these prediction
results reveals a significant qualitative improvement in pre-
dictions when employing the multi-loss function training
approach. The neural network trained with all three loss func-
tions showed the best results in terms of SSIM and PSNR
value as well as artifact reduction. Surprisingly, this model was
able to identify the irregular patterns on the boundary of the
unknown materials to some extent ( figures 10(c) and (h)). On
the other hand, the neural network trained with MSE and GDL
loss function only (figures 10(d) and (i)) slightly improved
prediction in terms of boundary definition comparing with the
prediction results of the neural network with MSE loss func-
tion only (figures 10(e) and (j)).

Figure 11 illustrates a quantitative comparison between
these three cases. Combining GDL with the MSE loss func-
tion slightly improved the overall performance compared to
the case with only the MSE loss function. On the other hand,
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Figure 10. Prediction results for the model with multiple loss functions. The model was trained with the D3-1k dataset with no
augmentation. (a) the GTM, (b) 3rd iteration EFI, (c), (d), and (e) are the predicted images of the model trained with MSE + GDL +
perceptual loss functions, MSE + GDL loss function, and MSE loss function only for sample-1, respectively. Similarly, (f) the GTM, (g)
3rd iteration EFI, (h)–(j) are the predicted images of the model trained with MSE + GDL + perceptual loss functions, MSE + GDL loss
function, and MSE loss function only for sample-2., respectively. ((e) and (j) are the same figures in figures 7(c) and (h), respectively.)

Figure 11. Quantitative comparison among predictions of neural
networks trained with various loss function combinations.

the neural network with all three loss functions outperformed
the other two cases with an average SSIM index of 93.83%
and PSNR of 27.83 dB. This implies that the addition of GDL
and perceptual loss significantly improves reconstruction qual-
ity. However, outliers in all cases suggest variability in results
depending on the test case.

4.4. OOD generalization and possible solution

Generalization, within the context of neural networks, denotes
the model’s capability to effectively accommodate novel and
previously unobserved data. Establishing the model’s general-
izability presents notable complexities, particularly in the con-
text of supervised learning, as exemplified in this study [62].
Conventionally, models are trained with the presumption that

both the training and test datasets adhere to the same underly-
ing distribution. Consequently, the challenge escalates when
the model encounters data points that fall outside the distribu-
tion learned during training, a scenario commonly referred to
as OOD data [63, 64].

Within the original dataset, the wave speed spanned from
1180 m s−1 to 1730 m s−1, with a background wave speed of
1479 m s−1. To assess the model’s generalizability to OOD
data, six additional test datasets were created, each comprising
100 samples of the 3rd iteration of EFI, as detailed in table 3.
In this table, the first three datasets (H1-3) exhibited higher
wave speed distributions than the original dataset, while the
last three datasets (L1-3) featured overlapping and lower wave
speed distributions compared to the original. Notably, datasets
H1 and L1 closely approximated the original dataset, while
H3 and L3 represented the furthest deviations from it. To fur-
ther challenge the model’s adaptability, the mesh configura-
tion was also modified. Instead of the 2500 spectral elements
used in the training dataset, these six datasets were discretized
into only 1600 spectral elements. Additionally, the boundar-
ies of the unknown materials were smoothed, differing from
the original training datasets. These datasets were specifically
designed to evaluate the model trained with D3-23k.

Initially, all datasets underwent standard data prepro-
cessing, scaling them to a range between 0 and 1. However,
under the current model configuration, it became evident that
the model struggled to predict the wave speed distribution
of each test dataset. Figure 12 showcases the outcomes of
these experiments. Figures (a), (d), (g), (j), (m) and (p) dis-
play example samples’ GTMs from datasets H1, H2, H3, L1,
L2, and L3, respectively. Moreover, images in figure 12(b),
(e), and (h) demonstrate that the model’s predictive capability
for datasets H1-3 was restricted by the upper bounds of the
wave speed range found in the training dataset, which reached
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Table 3. Specifications of different datasets for generalizability
testing. The maximum and minimum wave speeds include the
background wave speed of a particular dataset.

Dataset

wave speed (m s−1)

Background Max Min

H1 1800 2270 1800
H2 2000 2370 1850
H3 2200 2476 2020
L1 1300 1420 890
L2 1100 1220 820
L3 900 1220 700

1700m s−1 (1 after scaling). Conversely, for datasets L1-3, the
model managed to extract certain features of the wave speed
distribution that closely aligned with or fell within the training
dataset’s range. Therefore, the model’s inability to forecast the
wave speed distribution primarily arose from being trained on
a dataset with wave speed distributions confined within the 0
to 1 range (corresponding to 1180 m s−1 to 1730 m s−1 before
scaling).

To address this challenge, the model was trained with
unscaled data, recognizing that such data might introduce a
slower and potentially more unstable learning process. As
depicted in figures 12(c), (f), (i), (l), (o) and (r), these images
showcase the prediction outcomes achieved by the neural net-
work model trained on unscaled data.

The model improved its ability to identify various fea-
tures, including the size, shape, and spatial distribution of
unknownmaterials within the domain. Additionally, it showed
some accuracy in predictingwave speeds, particularly for data-
sets H1 and L1, which closely resembled the training dataset.
However, the neural network failed to reconstruct the smooth
boundaries of the unknown materials in every case. This out-
come is expected, as all training samples had rough boundary
definitions. Conversely, certain artifacts and anomalies per-
sisted, primarily due to differences in the mesh configuration
used in the FWI simulations. These findings suggest that fur-
ther refinement and optimization are needed to improve the
model’s generalization performance.

5. Conclusion

In order to address the challenges of computational costs and
extended processing times of TDFWI, this paper performed
fundamental research on the improvements achievable with
the integration of deep learning with the adjoint tomography
theory. In this study, numerical models were developed for
FWI simulation, and the SSIM was used to evaluate the inver-
ted images against GT<s. An HPC-based framework has been
built with a detailed description to accelerate the data genera-
tion process.Without the integration of deep learning, classical
FWI achieved an SSIM of approximately 67% and PSNR of
22.5 dB after 36 iterations, revealing the need for improvement
in structural reconstruction accuracy.

Figure 12. Prediction results of the neural network for OOD data.
(a), (d), (g), (j), (m) and (p) are GTM of example samples from
datasets H1, H2, H3, L1, L2, and L3, respectively. (b), (e), (h), (k),
(n), and (q) are the prediction results of the respective samples,
when tested with the model trained with the scaled dataset. (c), (f),
(i), (l), (o), and (r) are the prediction results of the respective
samples, when tested with the model trained with the scaled dataset.

A 2D CNN based on the U-Net architecture was selected to
explore the scientific questions on how amounts/distributions
of the training data, augmentation, and loss functions influence
the efficacy of this approach.

• When using a small dataset comprising 3rd-iteration
TDFWI images (700 training and 300 validation samples),
the current model achieved a 91% similarity index and
26 dB. By augmenting this dataset, the SSIM and PSNR
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increased to 92%–93% and 27 dB. However, artifacts
persisted, and no notable improvements in boundary
delineation between different wave speed distributions,
highlighting the need for more extensive training data.
Additionally, with such a limited and low-quality dataset,
prediction accuracy may be further enhanced by incorporat-
ing multiple loss functions during training.

• When using a small dataset comprising 10th-iteration
TDFWI images (700 training and 300 validation samples)
with more embedded material information, the model
achieved an impressive SSIM score of 98% and PSNR of
39 dB with notable improvements in boundary delineation
between different wave speed distributions. Notably, in this
scenario, augmentations did not confer additional benefits,
reinforcing the notion that higher iteration data inherently
contained ample information for precise predictions.

• When using a large dataset containing 1st-iteration TDFWI
images (20 000 training and 3000 validation samples), a sur-
prising observation is that lower iteration data can achieve
near-perfect predictions when provided in large quantities.

The above conclusions are with in-distribution data. The gen-
eralizability studies indicated that the model could success-
fully reconstruct wave speed maps even for samples out of the
wave speed ranges in the original dataset. However, anomalies
and artifacts were present, suggesting that further research is
needed to enhance the model’s robustness in handling unseen
data, especially for those with different shapes and sizes.

While this study provides insights into the efficacy of
deep-learning-based FWI reconstruction, the current simpli-
fied datasets do not fully reflect real-world applications across
various fields. Therefore, future work will focus on incorpor-
ating more complex and heterogeneous data and the scan-
ning configuration aligning with the medical imaging practice,
modeling frequency-dependent attenuation effects, and imple-
menting multi-scale frequency inversion.
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