ASDR_logo Blue_bar
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

Click here for the complete list of Dr. Su’s publications.

Names of Dr. Su’s advisees are underlined. Names in boldface type denote corresponding authors.

Refereed Journal Articles

  1. Huang, Y., and Su, W., “Updating Multi-Fidelity Structural Dynamic Models for Flexible Wings with Feed-Forward Neural Network,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, under revision.
  2. Qu, S., Zhu, G., Su, W., and Swei, S. S.-M., “LPV Model Based Adaptive MPC of an eVTOL Aircraft during Tilt Transition Subject to Motor Failure,” International Journal of Control, Automation, and Systems, accepted.
  3. Qu, S., Zhu, G., Su, W., and Swei, S. S.-M., “LPV-Based Transition Flight Control Design for a Tilt-rotor Aircraft,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, accepted.
  4. Qu, S., Zhu, G., Su, W., Swei, S. S.-M., Hashimoto, M., and Zeng, T., “Adaptive MPC of a Six-Rotor eVTOL UAM Aircraft subject to Motor Failure during Hovering,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, in press. (doi: 10.1177/09544100211032434)
  5. Su, W., Qu, S., Zhu, G., Swei, S. S.-M., Hashimoto, M., and Zeng, T., “Modeling and Control of a Class of Urban Air Mobility Tiltrotor Aircraft,” Aerospace Science and Technology, Vol. 124, 2022, Art. 107561 (17 pp).
    (doi: 10.1016/j.ast.2022.107561) [pdf]
  6. Hang, X., Su, W., Fei, Q., and Jiang, D., “Analytical Sensitivity Analysis of Flexible Aircraft with the Unsteady Vortex-Lattice Aerodynamic Theory,” Aerospace Science and Technology, Vol. 99, 2020, Art. 105612 (13 pp). (doi: 10.1016/j.ast.2019.105612) [pdf]
  7. Su, W., and Song, W., “A Real-Time Hybrid Aeroelastic Simulation Platform for Flexible Wings,” Aerospace Science and Technology, Vol. 95, 2019, Art. 105513 (12 pp). (doi: 10.1016/j.ast.2019.105513) [pdf]
  8. Hang, X., Fei, Q., and Su, W., “On Tracking Aeroelastic Modes in Stability Analysis Using Left and Right Eigenvectors,” AIAA Journal, Vol. 57, No. 10, 2019, pp. 4447–4457. (doi: 10.2514/1.J057297) [pdf]
  9. Tsushima, N., Yokozeki, T., Su, W., and Arizono, H. “Geometrically Nonlinear Static Aeroelastic Analysis of Composite Morphing Wing with Corrugated Structures,” Aerospace Science and Technology, Vol. 88, 2019, pp. 244–257. (doi: 10.1016/j.ast.2019.03.025) [pdf]
  10. He, T., Zhu, G., Swei, S. S.-M., and Su, W., “Smooth-Switching LPV Control for Vibration Suppression of a Flexible Airplane Wing,” Aerospace Science and Technology, Vol. 84, 2019, pp. 895–903.
    (doi: 10.1016/j.ast.2018.11.029) [pdf]
  11. He, T., Al-Jiboory, A. K., Zhu, G., Swei, S. S.-M., and Su, W., “Application of ICC LPV Control to a Blended-Wing-Body Airplane with Guaranteed H Performance,” Aerospace Science and Technology, Vol. 81, 2018, pp. 88–98. (doi: 10.1016/j.ast.2018.07.046) [pdf]
  12. Tsushima, N., and Su, W., “A Study on Adaptive Vibration Control and Energy Conversion of Highly Flexible Multifunctional Wings,” Aerospace Science and Technology, Vol. 79, 2018, pp. 297–309.
    (doi: 10.1016/j.ast.2018.05.056) [pdf]
  13. Hammerton, J. R., Su, W., Zhu, G., and Swei, S. S.-M., “Optimum Distributed Wing Shaping and Control Loads for Highly Flexible Aircraft,” Aerospace Science and Technology, Vol. 79, 2018, pp. 255–265.
    (doi: 10.1016/j.ast.2018.05.045) [pdf]
  14. Tsushima, N., Su, W., Gutierrez, H., Wolf, M. G., Griffin, E. D., Whittaker, J. T., and Dumoulin, M. P., “Monitoring Multi-Axial Vibrations of Flexible Rockets Using Sensor-Instrumented Reference Strain Structures,” Aerospace Science and Technology, Vol. 71, 2017, pp. 285–298. (doi: 10.1016/j.ast.2017.09.026) [pdf]
  15. Al-Jiboory, A. K., Zhu, G., Swei, S. S.-M., Su, W., and Nguyen, N. T., “LPV Modeling of a Flexible Wing Aircraft Using Adaptive Model Gridding and Alignment Methods,” Aerospace Science and Technology, Vol. 66, 2017, pp. 92–102. (doi: 10.1016/j.ast.2017.03.009) [pdf]
  16. Tsushima, N., and Su, W., “Flutter Suppression for Highly Flexible Wings Using Passive and Active Piezoelectric Effects,” Aerospace Science and Technology, Vol. 65, 2017, pp. 78–89.
    (doi: 10.1016/j.ast.2017.02.013) [pdf]
  17. Su, W., “Development of an Aeroelastic Formulation for Deformable Airfoils Using Orthogonal Polynomials,” AIAA Journal, Vol. 55, No. 8, 2017, pp. 2793–2807. (doi: 10.2514/1.J055665) [pdf]
  18. Su, W., and Reich, G. W., “Geometric Scaling of Artificial Hair Sensors for Flow Measurement under Different Conditions,” Smart Materials and Structures, Vol. 26, No. 3, 2017, Art. 037002 (9 pp).
    (doi: 10.1088/1361-665X/aa5a35) [pdf]
  19. Su, W., King, C. K., Clark, S. R., Griffin, E. D., Suhey, J. D., and Wolf, M. G., “Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets,” Journal of Spacecraft and Rockets, Vol. 54, No. 2, 2017, pp. 403–416. (doi: 10.2514/1.A33543) [pdf]
  20. Tsushima, N., and Su, W., “Concurrent Active Piezoelectric Control and Energy Harvesting of Highly Flexible Multifunctional Wings,” Journal of Aircraft, Vol. 54, No. 2, 2017, pp. 724–736. (doi: 10.2514/1.C033846) [pdf]
  21. Su, W., Swei, S. S.-M., and Zhu, G., “Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance,” Journal of Aircraft, Vol. 53, No. 5, 2016, pp. 1305–1316. (doi: 10.2514/1.C033490) [pdf]
  22. Tsushima, N., and Su, W., “Modeling of Highly Flexible Multifunctional Wings for Energy Harvesting,” Journal of Aircraft, Vol. 53, No. 4, 2016, pp. 1033–1044. (doi: 10.2514/1.C033496) [pdf]
  23. Phillips, D. M., Ray, C. W., Hagen, B. J., Su, W., Baur, J. W., and Reich, G. W., “Detection of Flow Separation and Stagnation Points Using Artificial Hair Sensors,” Smart Materials and Structures, Vol. 24, No. 11, 2015, Art. 115026 (10 pp). (doi: 10.1088/0964-1726/24/11/115026) [pdf]
  24. Su, W., and Cesnik, C. E. S., “Strain-Based Analysis for Geometrically Nonlinear Beams: A Modal Approach,” Journal of Aircraft, Vol. 51, No. 3, 2014, pp. 890–903. (doi: 10.2514/1.C032477) [pdf]
  25. Cesnik, C. E. S., Senatore, P. J., Su, W., Atkins, E. M., and Shearer, C. M., “X-HALE: A Very Flexible UAV for Nonlinear Aeroelastic Tests,” AIAA Journal, Vol. 50, No. 12, 2012, pp. 2820–2833. (doi: 10.2514/1.J051392) [pdf]
  26. Su, W., and Cesnik, C. E. S., “Strain-Based Geometrically Nonlinear Beam Formulation for Modeling Very Flexible Aircraft,” International Journal of Solids and Structures, Vol. 48, No. 16–17, 2011, pp. 2349–2360.
    (doi: 10.1016/j.ijsolstr.2011.04.012) [pdf]
  27. Su, W., and Cesnik, C. E. S., “Dynamic Response of Highly Flexible Flying Wings,” AIAA Journal, Vol. 49, No. 2, 2011, pp. 324–339. (doi: 10.2514/1.J050496) [pdf]
  28. Su, W., and Cesnik, C. E. S., “Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft,” Journal of Aircraft, Vol. 47, No. 5, 2010, pp. 1539–1553. (doi: 10.2514/1.47317) [pdf]

Top

Recent Refereed Conference Proceedings

  1. Su, W. and Song, W., “Stability of Real-Time Hybrid Aeroelastic Simulations with Actuation and Sensor Measurement Delays,” AIAA-2022-0525, Proceedings of the 2022 AIAA SciTech Forum, San Diego, CA & Online, Jan. 3–7, 2022.
  2. Nunes, J., and Su, W., “Multifunctional Energy-Storage Composite Embedded into Flexible Wing Structure,” AIAA-2021-0561, Proceedings of the 2021 AIAA SciTech Forum, Virtual Event, Jan. 11–21, 2021.
  3. Su, W., Qu, S., Zhu, G. G., Swei, S. S.-M., Hashimoto, M., and Zeng, T., “A Control-Oriented Dynamic Model of Tiltrotor Aircraft for Urban Air Mobility,” AIAA-2021-0091, Proceedings of the 2021 AIAA SciTech Forum, Virtual Event, Jan. 11–21, 2021. [journal version]

Top

Blue_bar
Last updated: 04/08/2022
Copyright © 2012–2022